Loading…

Water Stress Index Detection Using a Low-Cost Infrared Sensor and Excess Green Image Processing

Precision Irrigation (PI) is a promising technique for monitoring and controlling water use that allows for meeting crop water requirements based on site-specific data. However, implementing the PI needs precise data on water evapotranspiration. The detection and monitoring of crop water stress can...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2023-01, Vol.23 (3), p.1318
Main Authors: Paulo, Rodrigo Leme de, Garcia, Angel Pontin, Umezu, Claudio Kiyoshi, Camargo, Antonio Pires de, Soares, Fabrício Theodoro, Albiero, Daniel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c468t-84291c85ec488213829220b77e7feb031af46de6050162741be166a27fb9aacd3
container_end_page
container_issue 3
container_start_page 1318
container_title Sensors (Basel, Switzerland)
container_volume 23
creator Paulo, Rodrigo Leme de
Garcia, Angel Pontin
Umezu, Claudio Kiyoshi
Camargo, Antonio Pires de
Soares, Fabrício Theodoro
Albiero, Daniel
description Precision Irrigation (PI) is a promising technique for monitoring and controlling water use that allows for meeting crop water requirements based on site-specific data. However, implementing the PI needs precise data on water evapotranspiration. The detection and monitoring of crop water stress can be achieved by several methods, one of the most interesting being the use of infra-red (IR) thermometry combined with the estimate of the Crop Water Stress Index (CWSI). However, conventional IR equipment is expensive, so the objective of this paper is to present the development of a new low-cost water stress detection system using TL indices obtained by crossing the responses of infrared sensors with image processing. The results demonstrated that it is possible to use low-cost IR sensors with a directional Field of Vision (FoV) to measure plant temperature, generate thermal maps, and identify water stress conditions. The Leaf Temperature Maps, generated by the IR sensor readings of the plant segmentation in the RGB image, were validated by thermal images. Furthermore, the estimated CWSI is consistent with the literature results.
doi_str_mv 10.3390/s23031318
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e9805527a3c847fe90bf12d0ebdaea7f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743368031</galeid><doaj_id>oai_doaj_org_article_e9805527a3c847fe90bf12d0ebdaea7f</doaj_id><sourcerecordid>A743368031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-84291c85ec488213829220b77e7feb031af46de6050162741be166a27fb9aacd3</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhi0EomXhwB9AlrjAIcVfie0LUrWUstJKIJWKo-XYk5BVYhc7C-Xf47Bl1SIfbI3feWbGfhF6SckZ55q8y4wTTjlVj9ApFUxUijHy-N75BD3LeUcI45yrp-iEN1IyXutTZL7ZGRK-mhPkjDfBwy3-ADO4eYgBX-ch9NjibfxVrWOei6BLNoHHVxByTNgGjy9u3ZJ7mQAC3ky2B_wlxSVWkp-jJ50dM7y421fo-uPF1_Wnavv5crM-31ZONGqulGCaOlWDE0oxyhXTpe1WSpAdtGU424nGQ0NqQhsmBW2BNo1lsmu1tc7zFdocuD7anblJw2TTbxPtYP4GYuqNTfPgRjCgFalrJi13ShS8Jm1HmSfQegtWdoX1_sC62bcTeAdhTnZ8AH14E4bvpo8_jdZUEy0L4M0dIMUfe8izmYbsYBxtgLjPhklZN6z8QV2kr_-T7uI-hfJUi0poSTRfgGcHVW_LAEPoYqnryvIwDS4G6IYSP5eC80YtVliht4cEl2LOCbpj95SYxTPm6JmifXV_3KPyn0n4HzaGupo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774970937</pqid></control><display><type>article</type><title>Water Stress Index Detection Using a Low-Cost Infrared Sensor and Excess Green Image Processing</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Paulo, Rodrigo Leme de ; Garcia, Angel Pontin ; Umezu, Claudio Kiyoshi ; Camargo, Antonio Pires de ; Soares, Fabrício Theodoro ; Albiero, Daniel</creator><creatorcontrib>Paulo, Rodrigo Leme de ; Garcia, Angel Pontin ; Umezu, Claudio Kiyoshi ; Camargo, Antonio Pires de ; Soares, Fabrício Theodoro ; Albiero, Daniel</creatorcontrib><description>Precision Irrigation (PI) is a promising technique for monitoring and controlling water use that allows for meeting crop water requirements based on site-specific data. However, implementing the PI needs precise data on water evapotranspiration. The detection and monitoring of crop water stress can be achieved by several methods, one of the most interesting being the use of infra-red (IR) thermometry combined with the estimate of the Crop Water Stress Index (CWSI). However, conventional IR equipment is expensive, so the objective of this paper is to present the development of a new low-cost water stress detection system using TL indices obtained by crossing the responses of infrared sensors with image processing. The results demonstrated that it is possible to use low-cost IR sensors with a directional Field of Vision (FoV) to measure plant temperature, generate thermal maps, and identify water stress conditions. The Leaf Temperature Maps, generated by the IR sensor readings of the plant segmentation in the RGB image, were validated by thermal images. Furthermore, the estimated CWSI is consistent with the literature results.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s23031318</identifier><identifier>PMID: 36772359</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Crops ; Digital cameras ; Evapotranspiration ; Experiments ; Humidity ; Image processing ; Image segmentation ; infra-red sensor ; Infrared detectors ; Infrared imagery ; Irrigation ; Leaves ; Low cost ; Measurement ; Monitoring ; non-water-stressed baseline ; Plant growth ; precision irrigation ; Sensors ; soil moisture ; Temperature ; Thermal imaging ; Thermal mapping ; Thermal properties ; water stress ; Water use</subject><ispartof>Sensors (Basel, Switzerland), 2023-01, Vol.23 (3), p.1318</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c468t-84291c85ec488213829220b77e7feb031af46de6050162741be166a27fb9aacd3</cites><orcidid>0000-0002-8163-6638 ; 0000-0001-5164-2634 ; 0000-0001-6877-8618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2774970937/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2774970937?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36772359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paulo, Rodrigo Leme de</creatorcontrib><creatorcontrib>Garcia, Angel Pontin</creatorcontrib><creatorcontrib>Umezu, Claudio Kiyoshi</creatorcontrib><creatorcontrib>Camargo, Antonio Pires de</creatorcontrib><creatorcontrib>Soares, Fabrício Theodoro</creatorcontrib><creatorcontrib>Albiero, Daniel</creatorcontrib><title>Water Stress Index Detection Using a Low-Cost Infrared Sensor and Excess Green Image Processing</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Precision Irrigation (PI) is a promising technique for monitoring and controlling water use that allows for meeting crop water requirements based on site-specific data. However, implementing the PI needs precise data on water evapotranspiration. The detection and monitoring of crop water stress can be achieved by several methods, one of the most interesting being the use of infra-red (IR) thermometry combined with the estimate of the Crop Water Stress Index (CWSI). However, conventional IR equipment is expensive, so the objective of this paper is to present the development of a new low-cost water stress detection system using TL indices obtained by crossing the responses of infrared sensors with image processing. The results demonstrated that it is possible to use low-cost IR sensors with a directional Field of Vision (FoV) to measure plant temperature, generate thermal maps, and identify water stress conditions. The Leaf Temperature Maps, generated by the IR sensor readings of the plant segmentation in the RGB image, were validated by thermal images. Furthermore, the estimated CWSI is consistent with the literature results.</description><subject>Crops</subject><subject>Digital cameras</subject><subject>Evapotranspiration</subject><subject>Experiments</subject><subject>Humidity</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>infra-red sensor</subject><subject>Infrared detectors</subject><subject>Infrared imagery</subject><subject>Irrigation</subject><subject>Leaves</subject><subject>Low cost</subject><subject>Measurement</subject><subject>Monitoring</subject><subject>non-water-stressed baseline</subject><subject>Plant growth</subject><subject>precision irrigation</subject><subject>Sensors</subject><subject>soil moisture</subject><subject>Temperature</subject><subject>Thermal imaging</subject><subject>Thermal mapping</subject><subject>Thermal properties</subject><subject>water stress</subject><subject>Water use</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhi0EomXhwB9AlrjAIcVfie0LUrWUstJKIJWKo-XYk5BVYhc7C-Xf47Bl1SIfbI3feWbGfhF6SckZ55q8y4wTTjlVj9ApFUxUijHy-N75BD3LeUcI45yrp-iEN1IyXutTZL7ZGRK-mhPkjDfBwy3-ADO4eYgBX-ch9NjibfxVrWOei6BLNoHHVxByTNgGjy9u3ZJ7mQAC3ky2B_wlxSVWkp-jJ50dM7y421fo-uPF1_Wnavv5crM-31ZONGqulGCaOlWDE0oxyhXTpe1WSpAdtGU424nGQ0NqQhsmBW2BNo1lsmu1tc7zFdocuD7anblJw2TTbxPtYP4GYuqNTfPgRjCgFalrJi13ShS8Jm1HmSfQegtWdoX1_sC62bcTeAdhTnZ8AH14E4bvpo8_jdZUEy0L4M0dIMUfe8izmYbsYBxtgLjPhklZN6z8QV2kr_-T7uI-hfJUi0poSTRfgGcHVW_LAEPoYqnryvIwDS4G6IYSP5eC80YtVliht4cEl2LOCbpj95SYxTPm6JmifXV_3KPyn0n4HzaGupo</recordid><startdate>20230124</startdate><enddate>20230124</enddate><creator>Paulo, Rodrigo Leme de</creator><creator>Garcia, Angel Pontin</creator><creator>Umezu, Claudio Kiyoshi</creator><creator>Camargo, Antonio Pires de</creator><creator>Soares, Fabrício Theodoro</creator><creator>Albiero, Daniel</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8163-6638</orcidid><orcidid>https://orcid.org/0000-0001-5164-2634</orcidid><orcidid>https://orcid.org/0000-0001-6877-8618</orcidid></search><sort><creationdate>20230124</creationdate><title>Water Stress Index Detection Using a Low-Cost Infrared Sensor and Excess Green Image Processing</title><author>Paulo, Rodrigo Leme de ; Garcia, Angel Pontin ; Umezu, Claudio Kiyoshi ; Camargo, Antonio Pires de ; Soares, Fabrício Theodoro ; Albiero, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-84291c85ec488213829220b77e7feb031af46de6050162741be166a27fb9aacd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Crops</topic><topic>Digital cameras</topic><topic>Evapotranspiration</topic><topic>Experiments</topic><topic>Humidity</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>infra-red sensor</topic><topic>Infrared detectors</topic><topic>Infrared imagery</topic><topic>Irrigation</topic><topic>Leaves</topic><topic>Low cost</topic><topic>Measurement</topic><topic>Monitoring</topic><topic>non-water-stressed baseline</topic><topic>Plant growth</topic><topic>precision irrigation</topic><topic>Sensors</topic><topic>soil moisture</topic><topic>Temperature</topic><topic>Thermal imaging</topic><topic>Thermal mapping</topic><topic>Thermal properties</topic><topic>water stress</topic><topic>Water use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulo, Rodrigo Leme de</creatorcontrib><creatorcontrib>Garcia, Angel Pontin</creatorcontrib><creatorcontrib>Umezu, Claudio Kiyoshi</creatorcontrib><creatorcontrib>Camargo, Antonio Pires de</creatorcontrib><creatorcontrib>Soares, Fabrício Theodoro</creatorcontrib><creatorcontrib>Albiero, Daniel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulo, Rodrigo Leme de</au><au>Garcia, Angel Pontin</au><au>Umezu, Claudio Kiyoshi</au><au>Camargo, Antonio Pires de</au><au>Soares, Fabrício Theodoro</au><au>Albiero, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water Stress Index Detection Using a Low-Cost Infrared Sensor and Excess Green Image Processing</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2023-01-24</date><risdate>2023</risdate><volume>23</volume><issue>3</issue><spage>1318</spage><pages>1318-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Precision Irrigation (PI) is a promising technique for monitoring and controlling water use that allows for meeting crop water requirements based on site-specific data. However, implementing the PI needs precise data on water evapotranspiration. The detection and monitoring of crop water stress can be achieved by several methods, one of the most interesting being the use of infra-red (IR) thermometry combined with the estimate of the Crop Water Stress Index (CWSI). However, conventional IR equipment is expensive, so the objective of this paper is to present the development of a new low-cost water stress detection system using TL indices obtained by crossing the responses of infrared sensors with image processing. The results demonstrated that it is possible to use low-cost IR sensors with a directional Field of Vision (FoV) to measure plant temperature, generate thermal maps, and identify water stress conditions. The Leaf Temperature Maps, generated by the IR sensor readings of the plant segmentation in the RGB image, were validated by thermal images. Furthermore, the estimated CWSI is consistent with the literature results.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36772359</pmid><doi>10.3390/s23031318</doi><orcidid>https://orcid.org/0000-0002-8163-6638</orcidid><orcidid>https://orcid.org/0000-0001-5164-2634</orcidid><orcidid>https://orcid.org/0000-0001-6877-8618</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2023-01, Vol.23 (3), p.1318
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e9805527a3c847fe90bf12d0ebdaea7f
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Crops
Digital cameras
Evapotranspiration
Experiments
Humidity
Image processing
Image segmentation
infra-red sensor
Infrared detectors
Infrared imagery
Irrigation
Leaves
Low cost
Measurement
Monitoring
non-water-stressed baseline
Plant growth
precision irrigation
Sensors
soil moisture
Temperature
Thermal imaging
Thermal mapping
Thermal properties
water stress
Water use
title Water Stress Index Detection Using a Low-Cost Infrared Sensor and Excess Green Image Processing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20Stress%20Index%20Detection%20Using%20a%20Low-Cost%20Infrared%20Sensor%20and%20Excess%20Green%20Image%20Processing&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Paulo,%20Rodrigo%20Leme%20de&rft.date=2023-01-24&rft.volume=23&rft.issue=3&rft.spage=1318&rft.pages=1318-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s23031318&rft_dat=%3Cgale_doaj_%3EA743368031%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-84291c85ec488213829220b77e7feb031af46de6050162741be166a27fb9aacd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774970937&rft_id=info:pmid/36772359&rft_galeid=A743368031&rfr_iscdi=true