Loading…
Water Stress Index Detection Using a Low-Cost Infrared Sensor and Excess Green Image Processing
Precision Irrigation (PI) is a promising technique for monitoring and controlling water use that allows for meeting crop water requirements based on site-specific data. However, implementing the PI needs precise data on water evapotranspiration. The detection and monitoring of crop water stress can...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2023-01, Vol.23 (3), p.1318 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c468t-84291c85ec488213829220b77e7feb031af46de6050162741be166a27fb9aacd3 |
container_end_page | |
container_issue | 3 |
container_start_page | 1318 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 23 |
creator | Paulo, Rodrigo Leme de Garcia, Angel Pontin Umezu, Claudio Kiyoshi Camargo, Antonio Pires de Soares, Fabrício Theodoro Albiero, Daniel |
description | Precision Irrigation (PI) is a promising technique for monitoring and controlling water use that allows for meeting crop water requirements based on site-specific data. However, implementing the PI needs precise data on water evapotranspiration. The detection and monitoring of crop water stress can be achieved by several methods, one of the most interesting being the use of infra-red (IR) thermometry combined with the estimate of the Crop Water Stress Index (CWSI). However, conventional IR equipment is expensive, so the objective of this paper is to present the development of a new low-cost water stress detection system using TL indices obtained by crossing the responses of infrared sensors with image processing. The results demonstrated that it is possible to use low-cost IR sensors with a directional Field of Vision (FoV) to measure plant temperature, generate thermal maps, and identify water stress conditions. The Leaf Temperature Maps, generated by the IR sensor readings of the plant segmentation in the RGB image, were validated by thermal images. Furthermore, the estimated CWSI is consistent with the literature results. |
doi_str_mv | 10.3390/s23031318 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e9805527a3c847fe90bf12d0ebdaea7f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743368031</galeid><doaj_id>oai_doaj_org_article_e9805527a3c847fe90bf12d0ebdaea7f</doaj_id><sourcerecordid>A743368031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-84291c85ec488213829220b77e7feb031af46de6050162741be166a27fb9aacd3</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhi0EomXhwB9AlrjAIcVfie0LUrWUstJKIJWKo-XYk5BVYhc7C-Xf47Bl1SIfbI3feWbGfhF6SckZ55q8y4wTTjlVj9ApFUxUijHy-N75BD3LeUcI45yrp-iEN1IyXutTZL7ZGRK-mhPkjDfBwy3-ADO4eYgBX-ch9NjibfxVrWOei6BLNoHHVxByTNgGjy9u3ZJ7mQAC3ky2B_wlxSVWkp-jJ50dM7y421fo-uPF1_Wnavv5crM-31ZONGqulGCaOlWDE0oxyhXTpe1WSpAdtGU424nGQ0NqQhsmBW2BNo1lsmu1tc7zFdocuD7anblJw2TTbxPtYP4GYuqNTfPgRjCgFalrJi13ShS8Jm1HmSfQegtWdoX1_sC62bcTeAdhTnZ8AH14E4bvpo8_jdZUEy0L4M0dIMUfe8izmYbsYBxtgLjPhklZN6z8QV2kr_-T7uI-hfJUi0poSTRfgGcHVW_LAEPoYqnryvIwDS4G6IYSP5eC80YtVliht4cEl2LOCbpj95SYxTPm6JmifXV_3KPyn0n4HzaGupo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774970937</pqid></control><display><type>article</type><title>Water Stress Index Detection Using a Low-Cost Infrared Sensor and Excess Green Image Processing</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Paulo, Rodrigo Leme de ; Garcia, Angel Pontin ; Umezu, Claudio Kiyoshi ; Camargo, Antonio Pires de ; Soares, Fabrício Theodoro ; Albiero, Daniel</creator><creatorcontrib>Paulo, Rodrigo Leme de ; Garcia, Angel Pontin ; Umezu, Claudio Kiyoshi ; Camargo, Antonio Pires de ; Soares, Fabrício Theodoro ; Albiero, Daniel</creatorcontrib><description>Precision Irrigation (PI) is a promising technique for monitoring and controlling water use that allows for meeting crop water requirements based on site-specific data. However, implementing the PI needs precise data on water evapotranspiration. The detection and monitoring of crop water stress can be achieved by several methods, one of the most interesting being the use of infra-red (IR) thermometry combined with the estimate of the Crop Water Stress Index (CWSI). However, conventional IR equipment is expensive, so the objective of this paper is to present the development of a new low-cost water stress detection system using TL indices obtained by crossing the responses of infrared sensors with image processing. The results demonstrated that it is possible to use low-cost IR sensors with a directional Field of Vision (FoV) to measure plant temperature, generate thermal maps, and identify water stress conditions. The Leaf Temperature Maps, generated by the IR sensor readings of the plant segmentation in the RGB image, were validated by thermal images. Furthermore, the estimated CWSI is consistent with the literature results.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s23031318</identifier><identifier>PMID: 36772359</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Crops ; Digital cameras ; Evapotranspiration ; Experiments ; Humidity ; Image processing ; Image segmentation ; infra-red sensor ; Infrared detectors ; Infrared imagery ; Irrigation ; Leaves ; Low cost ; Measurement ; Monitoring ; non-water-stressed baseline ; Plant growth ; precision irrigation ; Sensors ; soil moisture ; Temperature ; Thermal imaging ; Thermal mapping ; Thermal properties ; water stress ; Water use</subject><ispartof>Sensors (Basel, Switzerland), 2023-01, Vol.23 (3), p.1318</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c468t-84291c85ec488213829220b77e7feb031af46de6050162741be166a27fb9aacd3</cites><orcidid>0000-0002-8163-6638 ; 0000-0001-5164-2634 ; 0000-0001-6877-8618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2774970937/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2774970937?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36772359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paulo, Rodrigo Leme de</creatorcontrib><creatorcontrib>Garcia, Angel Pontin</creatorcontrib><creatorcontrib>Umezu, Claudio Kiyoshi</creatorcontrib><creatorcontrib>Camargo, Antonio Pires de</creatorcontrib><creatorcontrib>Soares, Fabrício Theodoro</creatorcontrib><creatorcontrib>Albiero, Daniel</creatorcontrib><title>Water Stress Index Detection Using a Low-Cost Infrared Sensor and Excess Green Image Processing</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Precision Irrigation (PI) is a promising technique for monitoring and controlling water use that allows for meeting crop water requirements based on site-specific data. However, implementing the PI needs precise data on water evapotranspiration. The detection and monitoring of crop water stress can be achieved by several methods, one of the most interesting being the use of infra-red (IR) thermometry combined with the estimate of the Crop Water Stress Index (CWSI). However, conventional IR equipment is expensive, so the objective of this paper is to present the development of a new low-cost water stress detection system using TL indices obtained by crossing the responses of infrared sensors with image processing. The results demonstrated that it is possible to use low-cost IR sensors with a directional Field of Vision (FoV) to measure plant temperature, generate thermal maps, and identify water stress conditions. The Leaf Temperature Maps, generated by the IR sensor readings of the plant segmentation in the RGB image, were validated by thermal images. Furthermore, the estimated CWSI is consistent with the literature results.</description><subject>Crops</subject><subject>Digital cameras</subject><subject>Evapotranspiration</subject><subject>Experiments</subject><subject>Humidity</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>infra-red sensor</subject><subject>Infrared detectors</subject><subject>Infrared imagery</subject><subject>Irrigation</subject><subject>Leaves</subject><subject>Low cost</subject><subject>Measurement</subject><subject>Monitoring</subject><subject>non-water-stressed baseline</subject><subject>Plant growth</subject><subject>precision irrigation</subject><subject>Sensors</subject><subject>soil moisture</subject><subject>Temperature</subject><subject>Thermal imaging</subject><subject>Thermal mapping</subject><subject>Thermal properties</subject><subject>water stress</subject><subject>Water use</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhi0EomXhwB9AlrjAIcVfie0LUrWUstJKIJWKo-XYk5BVYhc7C-Xf47Bl1SIfbI3feWbGfhF6SckZ55q8y4wTTjlVj9ApFUxUijHy-N75BD3LeUcI45yrp-iEN1IyXutTZL7ZGRK-mhPkjDfBwy3-ADO4eYgBX-ch9NjibfxVrWOei6BLNoHHVxByTNgGjy9u3ZJ7mQAC3ky2B_wlxSVWkp-jJ50dM7y421fo-uPF1_Wnavv5crM-31ZONGqulGCaOlWDE0oxyhXTpe1WSpAdtGU424nGQ0NqQhsmBW2BNo1lsmu1tc7zFdocuD7anblJw2TTbxPtYP4GYuqNTfPgRjCgFalrJi13ShS8Jm1HmSfQegtWdoX1_sC62bcTeAdhTnZ8AH14E4bvpo8_jdZUEy0L4M0dIMUfe8izmYbsYBxtgLjPhklZN6z8QV2kr_-T7uI-hfJUi0poSTRfgGcHVW_LAEPoYqnryvIwDS4G6IYSP5eC80YtVliht4cEl2LOCbpj95SYxTPm6JmifXV_3KPyn0n4HzaGupo</recordid><startdate>20230124</startdate><enddate>20230124</enddate><creator>Paulo, Rodrigo Leme de</creator><creator>Garcia, Angel Pontin</creator><creator>Umezu, Claudio Kiyoshi</creator><creator>Camargo, Antonio Pires de</creator><creator>Soares, Fabrício Theodoro</creator><creator>Albiero, Daniel</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8163-6638</orcidid><orcidid>https://orcid.org/0000-0001-5164-2634</orcidid><orcidid>https://orcid.org/0000-0001-6877-8618</orcidid></search><sort><creationdate>20230124</creationdate><title>Water Stress Index Detection Using a Low-Cost Infrared Sensor and Excess Green Image Processing</title><author>Paulo, Rodrigo Leme de ; Garcia, Angel Pontin ; Umezu, Claudio Kiyoshi ; Camargo, Antonio Pires de ; Soares, Fabrício Theodoro ; Albiero, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-84291c85ec488213829220b77e7feb031af46de6050162741be166a27fb9aacd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Crops</topic><topic>Digital cameras</topic><topic>Evapotranspiration</topic><topic>Experiments</topic><topic>Humidity</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>infra-red sensor</topic><topic>Infrared detectors</topic><topic>Infrared imagery</topic><topic>Irrigation</topic><topic>Leaves</topic><topic>Low cost</topic><topic>Measurement</topic><topic>Monitoring</topic><topic>non-water-stressed baseline</topic><topic>Plant growth</topic><topic>precision irrigation</topic><topic>Sensors</topic><topic>soil moisture</topic><topic>Temperature</topic><topic>Thermal imaging</topic><topic>Thermal mapping</topic><topic>Thermal properties</topic><topic>water stress</topic><topic>Water use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulo, Rodrigo Leme de</creatorcontrib><creatorcontrib>Garcia, Angel Pontin</creatorcontrib><creatorcontrib>Umezu, Claudio Kiyoshi</creatorcontrib><creatorcontrib>Camargo, Antonio Pires de</creatorcontrib><creatorcontrib>Soares, Fabrício Theodoro</creatorcontrib><creatorcontrib>Albiero, Daniel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulo, Rodrigo Leme de</au><au>Garcia, Angel Pontin</au><au>Umezu, Claudio Kiyoshi</au><au>Camargo, Antonio Pires de</au><au>Soares, Fabrício Theodoro</au><au>Albiero, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water Stress Index Detection Using a Low-Cost Infrared Sensor and Excess Green Image Processing</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2023-01-24</date><risdate>2023</risdate><volume>23</volume><issue>3</issue><spage>1318</spage><pages>1318-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Precision Irrigation (PI) is a promising technique for monitoring and controlling water use that allows for meeting crop water requirements based on site-specific data. However, implementing the PI needs precise data on water evapotranspiration. The detection and monitoring of crop water stress can be achieved by several methods, one of the most interesting being the use of infra-red (IR) thermometry combined with the estimate of the Crop Water Stress Index (CWSI). However, conventional IR equipment is expensive, so the objective of this paper is to present the development of a new low-cost water stress detection system using TL indices obtained by crossing the responses of infrared sensors with image processing. The results demonstrated that it is possible to use low-cost IR sensors with a directional Field of Vision (FoV) to measure plant temperature, generate thermal maps, and identify water stress conditions. The Leaf Temperature Maps, generated by the IR sensor readings of the plant segmentation in the RGB image, were validated by thermal images. Furthermore, the estimated CWSI is consistent with the literature results.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36772359</pmid><doi>10.3390/s23031318</doi><orcidid>https://orcid.org/0000-0002-8163-6638</orcidid><orcidid>https://orcid.org/0000-0001-5164-2634</orcidid><orcidid>https://orcid.org/0000-0001-6877-8618</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2023-01, Vol.23 (3), p.1318 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e9805527a3c847fe90bf12d0ebdaea7f |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | Crops Digital cameras Evapotranspiration Experiments Humidity Image processing Image segmentation infra-red sensor Infrared detectors Infrared imagery Irrigation Leaves Low cost Measurement Monitoring non-water-stressed baseline Plant growth precision irrigation Sensors soil moisture Temperature Thermal imaging Thermal mapping Thermal properties water stress Water use |
title | Water Stress Index Detection Using a Low-Cost Infrared Sensor and Excess Green Image Processing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20Stress%20Index%20Detection%20Using%20a%20Low-Cost%20Infrared%20Sensor%20and%20Excess%20Green%20Image%20Processing&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Paulo,%20Rodrigo%20Leme%20de&rft.date=2023-01-24&rft.volume=23&rft.issue=3&rft.spage=1318&rft.pages=1318-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s23031318&rft_dat=%3Cgale_doaj_%3EA743368031%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-84291c85ec488213829220b77e7feb031af46de6050162741be166a27fb9aacd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774970937&rft_id=info:pmid/36772359&rft_galeid=A743368031&rfr_iscdi=true |