Loading…
Replacement Strategy of Insulators Established by Probability of Failure
Insulators comprise only 5% of the capital cost of transmission lines; they are accountable for 70% of line interruptions and 50% of maintenance costs of transmission lines. Major transmission lines situated in different parts of the world were mostly all constructed 30 years ago. These lines have e...
Saved in:
Published in: | Energies (Basel) 2020-04, Vol.13 (8), p.2043 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Insulators comprise only 5% of the capital cost of transmission lines; they are accountable for 70% of line interruptions and 50% of maintenance costs of transmission lines. Major transmission lines situated in different parts of the world were mostly all constructed 30 years ago. These lines have either completed or are approaching the active life at 30 years. It is not possible to replace all insulators at a time in any utility. From a standpoint of consistency, it is quite important to locate insulators that require replacement prior to the occurrence of failure. Recalling these issues, a replacement strategy was modeled on insulator samples, operated at 154 kV, mechanical and electrical rating (M+E) 25,000 lbs and within the 10–50 years (Y) age group, collected in bulk for laboratory evaluation, based on the probability of mechanical failure (P(F)) of insulators. For conducting these studies, tensile load test such as combined electrical and mechanical failing load test was performed on selected 30 new and aged porcelain insulator samples from bulk to access recent condition. It was observed that insulators under service for 50 years manifested a decrease of 89.3% in quality factor (K), as compared to insulators within 10 years of service. A micro-structural study was carried out by using an optical microscope (OM) and a scanning electron microscope (SEM) for the further confirmation of previous evaluations. P(F) was derived by implementing Weibull distribution on the experimental observations. It was observed that insulators with an age of 50 years depicted a 2.7% increase in P(F), as compared to insulators with an age of 10 years. This article discussed a strategy for accessing the recent condition of new, aged bulk samples and the criteria of the replacement of the insulator string based on P(F). |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en13082043 |