Loading…
A Sensor Fusion Framework for Indoor Localization Using Smartphone Sensors and Wi-Fi RSSI Measurements
Sensor fusion frameworks for indoor localization are developed with the specific goal of reducing positioning errors. Although many conventional localization frameworks without fusion have been improved to reduce positioning error, sensor fusion frameworks generally provide a further improvement in...
Saved in:
Published in: | Applied sciences 2019-10, Vol.9 (20), p.4379 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sensor fusion frameworks for indoor localization are developed with the specific goal of reducing positioning errors. Although many conventional localization frameworks without fusion have been improved to reduce positioning error, sensor fusion frameworks generally provide a further improvement in positioning accuracy. In this paper, we propose a sensor fusion framework for indoor localization using the smartphone inertial measurement unit (IMU) sensor data and Wi-Fi received signal strength indication (RSSI) measurements. The proposed sensor fusion framework uses location fingerprinting and trilateration for Wi-Fi positioning. Additionally, a pedestrian dead reckoning (PDR) algorithm is used for position estimation in indoor scenarios. The proposed framework achieves a maximum of 1.17 m localization error for the rectangular motion of a pedestrian and a maximum of 0.44 m localization error for linear motion. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app9204379 |