Loading…

A Sensor Fusion Framework for Indoor Localization Using Smartphone Sensors and Wi-Fi RSSI Measurements

Sensor fusion frameworks for indoor localization are developed with the specific goal of reducing positioning errors. Although many conventional localization frameworks without fusion have been improved to reduce positioning error, sensor fusion frameworks generally provide a further improvement in...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2019-10, Vol.9 (20), p.4379
Main Authors: Poulose, Alwin, Kim, Jihun, Han, Dong Seog
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sensor fusion frameworks for indoor localization are developed with the specific goal of reducing positioning errors. Although many conventional localization frameworks without fusion have been improved to reduce positioning error, sensor fusion frameworks generally provide a further improvement in positioning accuracy. In this paper, we propose a sensor fusion framework for indoor localization using the smartphone inertial measurement unit (IMU) sensor data and Wi-Fi received signal strength indication (RSSI) measurements. The proposed sensor fusion framework uses location fingerprinting and trilateration for Wi-Fi positioning. Additionally, a pedestrian dead reckoning (PDR) algorithm is used for position estimation in indoor scenarios. The proposed framework achieves a maximum of 1.17 m localization error for the rectangular motion of a pedestrian and a maximum of 0.44 m localization error for linear motion.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9204379