Loading…

Chromatin and Transcriptional Analysis of Mesoderm Progenitor Cells Identifies HOPX as a Regulator of Primitive Hematopoiesis

We analyzed chromatin dynamics and transcriptional activity of human embryonic stem cell (hESC)-derived cardiac progenitor cells (CPCs) and KDR+/CD34+ endothelial cells generated from different mesodermal origins. Using an unbiased algorithm to hierarchically rank genes modulated at the level of chr...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports (Cambridge) 2017-08, Vol.20 (7), p.1597-1608
Main Authors: Palpant, Nathan J., Wang, Yuliang, Hadland, Brandon, Zaunbrecher, Rebecca J., Redd, Meredith, Jones, Daniel, Pabon, Lil, Jain, Rajan, Epstein, Jonathan, Ruzzo, Walter L., Zheng, Ying, Bernstein, Irwin, Margolin, Adam, Murry, Charles E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We analyzed chromatin dynamics and transcriptional activity of human embryonic stem cell (hESC)-derived cardiac progenitor cells (CPCs) and KDR+/CD34+ endothelial cells generated from different mesodermal origins. Using an unbiased algorithm to hierarchically rank genes modulated at the level of chromatin and transcription, we identified candidate regulators of mesodermal lineage determination. HOPX, a non-DNA-binding homeodomain protein, was identified as a candidate regulator of blood-forming endothelial cells. Using HOPX reporter and knockout hESCs, we show that HOPX regulates blood formation. Loss of HOPX does not impact endothelial fate specification but markedly reduces primitive hematopoiesis, acting at least in part through failure to suppress Wnt/β-catenin signaling. Thus, chromatin state analysis permits identification of regulators of mesodermal specification, including a conserved role for HOPX in governing primitive hematopoiesis. [Display omitted] •Chromatin dynamics reveal genes governing cell identity•HOPX is identified as a regulator of mesoderm lineage determination•HOPX modulates primitive hematopoiesis by inhibition of Wnt signaling Palpant et al. analyze gene expression and chromatin dynamics in cardiovascular progenitor cells derived from hPSCs to elucidate genes governing cell fate. HOPX is identified as a regulator of primitive hematopoiesis, providing insight into controlling cell lineages from pluripotency for disease modeling or therapeutic applications.
ISSN:2211-1247
2211-1247
DOI:10.1016/j.celrep.2017.07.067