Loading…
RTL development of a parameterizable Reed–Solomon Codec
Error correction coding (ECC) methods have been considered essential constituents of data transmission systems. Reed–Solomon (RS) codes are a core ECC technique that have been adopted in numerous applications and standards. Several register‐transfer level (RTL) architectures for RS codecs have been...
Saved in:
Published in: | Chronic diseases and translational medicine 2021-03, Vol.15 (2), p.143-159 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Error correction coding (ECC) methods have been considered essential constituents of data transmission systems. Reed–Solomon (RS) codes are a core ECC technique that have been adopted in numerous applications and standards. Several register‐transfer level (RTL) architectures for RS codecs have been proposed to address specific demands and overcome scalability challenges in speed and area. However, the influence of the main RS codec parameters on the corresponding hardware design has been undervalued by literature. The authors propose an open access intellectual property (IP) of a parameterizable RS codec and explore key aspects of its RTL development using IEEE 802.15.7 standard as illustration. Herein, it is demonstrated that formal verification has the potential to be solely used to attest the correctness of the developed IP for the RS codec configurations specified by IEEE 802.15.7. Furthermore, synthesis reports for the target field‐programmable gate array devices indicate that the proposed IP is able to cope with throughput requirements in IEEE 802.15.7. |
---|---|
ISSN: | 1751-8601 2095-882X 1751-861X 2589-0514 |
DOI: | 10.1049/cdt2.12009 |