Loading…
Using microsphere or fluorescein tracers and total oocyst output to measure ingestion of material following live-coccidiosis vaccinations
One method of prevention of coccidiosis in broiler chickens raised without antibiotics relies on coccidiosis vaccination. Live-coccidiosis vaccines carry the risk for pathogenic effects if the Eimeria species overcycle. However, all chicks must receive an appropriate dose of Eimeria oocysts to induc...
Saved in:
Published in: | Poultry science 2023-06, Vol.102 (6), p.102642-102642, Article 102642 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One method of prevention of coccidiosis in broiler chickens raised without antibiotics relies on coccidiosis vaccination. Live-coccidiosis vaccines carry the risk for pathogenic effects if the Eimeria species overcycle. However, all chicks must receive an appropriate dose of Eimeria oocysts to induce immunity and reduce the risk of adverse effects. At the hatchery, coccidiosis vaccines are administered topically to boxes of chicks by spray or gel-droplet application. Determining the volume of vaccine ingested by individual chicks could provide a means of evaluating the success of different application methods. For each of 2 mass application methods (spray, gel-droplet), we used 3 quantification methodologies to determine the amount of vaccine material ingested by chicks: total oocyst counts from feces collected 5- to 8-days postvaccination; and counts of either microsphere or fluorescein tracers recovered from the gastrointestinal tract 30-min postvaccination. For each quantification methodology, chicks vaccinated via spray or gel-droplet application were compared to chicks vaccinated via oral gavage using the same concentration of oocysts per mL for all groups. Chicks vaccinated via gel-droplet application shed 10-fold more oocysts than those vaccinated by spray application. Individual chick consumption of vaccine material using tracers also revealed that chicks ingested more material following gel-droplet application than spray application, although the magnitude of the difference varied based on quantification methodology. The results of this study suggest that all 3 quantification methodologies can be used to help validate and improve mass vaccine application methods to ensure optimal ingestion, and therefore, coccidiosis vaccination success. |
---|---|
ISSN: | 0032-5791 1525-3171 |
DOI: | 10.1016/j.psj.2023.102642 |