Loading…
Punica granatum peel extracts mediated the green synthesis of gold nanoparticles and their detailed in vivo biological activities
Requirements for developing new methodologies to biosynthesize nanoparticles are increasing day by day. The typical chemical synthesis of nanoparticles has raised concerns regarding environmental safety and adverse impact on human health. Therefore, there is an urgent need to develop green synthesiz...
Saved in:
Published in: | Green processing and synthesis 2021-12, Vol.10 (1), p.882-892 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Requirements for developing new methodologies to biosynthesize nanoparticles are increasing day by day. The typical chemical synthesis of nanoparticles has raised concerns regarding environmental safety and adverse impact on human health. Therefore, there is an urgent need to develop green synthesized nanoparticles that are considered to be safe, ecofriendly, and cost-effective as compared to chemical approaches. Hence, in this study, we synthesized and characterized pomegranate peel extract-based gold nanoparticles (PP-AuNPs) through UV-visible spectroscopy, FT-IR, and AFM microscopy. Furthermore, the biological activities like analgesic, muscle relaxant, and sedative properties of synthesized PP-AuNPs were also determined. The change of color to dark ruby indicates the formation of AuNPs. The surface plasma resonance (SPR) peak in the absorption spectra was shown at 525 nm by using (UV-Vis) spectroscopy. A single distinctive peak implied the shape of nanoparticles to be spherical. AFM images revealed that the biosynthesized nanoparticles were spherical in shape. Furthermore, the images confirm the uniform distribution of PP-AuNPs with particle sizes ranging from 4 to 16 nm. Different classes of phytochemicals were preliminarily identified in extracts. The analgesic effect of extracts (70.04%) and PP-AuNPs (81.98%) demonstrated a significant (
< 0.001) percent reduction in writhing at a dose of 100 and 15 mg·kg
, respectively. A mild muscle relaxant effect was noted against both the tested samples while a significant sedative effect was observed for both samples; however, PP-AuNPs weres more sedative compared to the extract. Pomegranate peel extracts and synthesized PP-AuNPs were found to possess significant analgesic, muscle relaxant, and sedative properties. |
---|---|
ISSN: | 2191-9550 2191-9542 2191-9550 |
DOI: | 10.1515/gps-2021-0080 |