Loading…
The Structural and Electrochemical Properties of CuCoO2 Crystalline Nanopowders and Thin Films: Conductivity Experimental Analysis and Insights from Density Functional Theory Calculations
A novel manufacturing process is presented for producing nanopowders and thin films of CuCoO2 (CCO) material. This process utilizes three cost-effective synthesis methods: hydrothermal, sol-gel, and solid-state reactions. The resulting delafossite CuCoO2 samples were deposited onto transparent subst...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2023-08, Vol.13 (16), p.2312 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-8a69944f2ab23c0f75daef959d8e5ff8c0423430ebcc9e62ab1c923ede7b33e73 |
---|---|
cites | cdi_FETCH-LOGICAL-c456t-8a69944f2ab23c0f75daef959d8e5ff8c0423430ebcc9e62ab1c923ede7b33e73 |
container_end_page | |
container_issue | 16 |
container_start_page | 2312 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 13 |
creator | Chfii, Hasnae Bouich, Amal Andrio, Andreu Torres, Joeluis Cerutti Soucase, Bernabé Mari Palacios, Pablo Lefdil, Mohammed Abd Compañ, Vicente |
description | A novel manufacturing process is presented for producing nanopowders and thin films of CuCoO2 (CCO) material. This process utilizes three cost-effective synthesis methods: hydrothermal, sol-gel, and solid-state reactions. The resulting delafossite CuCoO2 samples were deposited onto transparent substrates through spray pyrolysis, forming innovative thin films with a nanocrystal powder structure. Prior to the transformation into thin films, CuCoO2 powder was first produced using a low-cost approach. The precursors for both powders and thin films were deposited onto glass surfaces using a spray pyrolysis process, and their characteristics were examined through X-ray diffraction, scanning electron microscopy, HR-TEM, UV-visible spectrophotometry, and electrochemical impedance spectroscopy (EIS) analyses were conducted to determine the conductivity in the transversal direction of this groundbreaking material for solar cell applications. On the other hand, the sheet resistance of the samples was investigated using the four-probe method to obtain the sheet resistivity and then calculate the in-plane conductivity of the samples. We also investigated the aging characteristics of different precursors with varying durations. The functional properties of CuCoO2 samples were explored by studying chelating agent and precursor solution aging periods using Density Functional Theory calculations (DFT). A complementary Density Functional Theory study was also performed in order to evaluate the electronic structure of this compound. Resuming, this study thoroughly discusses the synthesis of delafossite powders and their conversion into thin films, which hold potential as hole transport layers in transparent optoelectronic devices. |
doi_str_mv | 10.3390/nano13162312 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e9cd1294e4584b2d8246fbbf3c76a4c2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e9cd1294e4584b2d8246fbbf3c76a4c2</doaj_id><sourcerecordid>2857413516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-8a69944f2ab23c0f75daef959d8e5ff8c0423430ebcc9e62ab1c923ede7b33e73</originalsourceid><addsrcrecordid>eNpdks1u1DAQgCMEolXpjQewxIUDC_FfEnNBVboLK1UUieVsOc541yvHXuyksM_Gy-FtKtTii-3xN5_GoymK17h8T6koP3jlA6a4IhSTZ8U5KWuxYELg54_OZ8VlSvsyL4Fpw-nL4ozWFS0bUZ0XfzY7QN_HOOlxisoh5Xu0dKDHGPQOBqtz7FsMB4ijhYSCQe3UhluC2nhMo3LOekBfcxWH8KuHmO4Fm531aGXdkD6iNvg-y-2dHY9o-TuL7AA-Z6Irr9wx2Tll7ZPd7saETAwDuoZ8zfxq8jk1ZDA7IcQjapXTk1OnYHpVvDDKJbh82C-KH6vlpv2yuLn9vG6vbhaa8WpcNKoSgjFDVEeoLk3NewVGcNE3wI1pdMkIZbSETmsBVcawFoRCD3VHKdT0oljP3j6ovTzkD6h4lEFZeR8IcStVbo92IEHoHhPBgPGGdaRvCKtM1xmq60oxTbLr0-w6TN0Avc6tyG1_In364u1ObsOdxCXjoqY8G94-GGL4OUEa5WCTBueUhzAlSRpeN6zhrMrom__QfZhi7uZMMUw5PlHvZkrHkFIE868aXMrTlMnHU0b_AjtNyTs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857413516</pqid></control><display><type>article</type><title>The Structural and Electrochemical Properties of CuCoO2 Crystalline Nanopowders and Thin Films: Conductivity Experimental Analysis and Insights from Density Functional Theory Calculations</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Chfii, Hasnae ; Bouich, Amal ; Andrio, Andreu ; Torres, Joeluis Cerutti ; Soucase, Bernabé Mari ; Palacios, Pablo ; Lefdil, Mohammed Abd ; Compañ, Vicente</creator><creatorcontrib>Chfii, Hasnae ; Bouich, Amal ; Andrio, Andreu ; Torres, Joeluis Cerutti ; Soucase, Bernabé Mari ; Palacios, Pablo ; Lefdil, Mohammed Abd ; Compañ, Vicente</creatorcontrib><description>A novel manufacturing process is presented for producing nanopowders and thin films of CuCoO2 (CCO) material. This process utilizes three cost-effective synthesis methods: hydrothermal, sol-gel, and solid-state reactions. The resulting delafossite CuCoO2 samples were deposited onto transparent substrates through spray pyrolysis, forming innovative thin films with a nanocrystal powder structure. Prior to the transformation into thin films, CuCoO2 powder was first produced using a low-cost approach. The precursors for both powders and thin films were deposited onto glass surfaces using a spray pyrolysis process, and their characteristics were examined through X-ray diffraction, scanning electron microscopy, HR-TEM, UV-visible spectrophotometry, and electrochemical impedance spectroscopy (EIS) analyses were conducted to determine the conductivity in the transversal direction of this groundbreaking material for solar cell applications. On the other hand, the sheet resistance of the samples was investigated using the four-probe method to obtain the sheet resistivity and then calculate the in-plane conductivity of the samples. We also investigated the aging characteristics of different precursors with varying durations. The functional properties of CuCoO2 samples were explored by studying chelating agent and precursor solution aging periods using Density Functional Theory calculations (DFT). A complementary Density Functional Theory study was also performed in order to evaluate the electronic structure of this compound. Resuming, this study thoroughly discusses the synthesis of delafossite powders and their conversion into thin films, which hold potential as hole transport layers in transparent optoelectronic devices.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano13162312</identifier><identifier>PMID: 37630896</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aging ; Caustic soda ; Chelating agents ; Chelation ; Conductivity ; delafossite ; Density functional theory ; EIS ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrodes ; Electronic structure ; Glass substrates ; Humidity ; Investigations ; Manufacturing industry ; Mathematical analysis ; Nanocrystals ; Nitrates ; Optoelectronic devices ; Photovoltaic cells ; powder ; Precursors ; Pyrolysis ; Scanning electron microscopy ; Sol-gel processes ; Solar cells ; Spectrophotometry ; Spectroscopy ; Spectrum analysis ; Spray pyrolysis ; Substrates ; Synthesis ; Temperature ; Thin films ; X-ray diffraction</subject><ispartof>Nanomaterials (Basel, Switzerland), 2023-08, Vol.13 (16), p.2312</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-8a69944f2ab23c0f75daef959d8e5ff8c0423430ebcc9e62ab1c923ede7b33e73</citedby><cites>FETCH-LOGICAL-c456t-8a69944f2ab23c0f75daef959d8e5ff8c0423430ebcc9e62ab1c923ede7b33e73</cites><orcidid>0000-0003-0001-419X ; 0000-0001-6745-8831 ; 0000-0001-7867-8880 ; 0000-0001-8233-7472 ; 0000-0003-2805-103X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2857413516/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2857413516?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids></links><search><creatorcontrib>Chfii, Hasnae</creatorcontrib><creatorcontrib>Bouich, Amal</creatorcontrib><creatorcontrib>Andrio, Andreu</creatorcontrib><creatorcontrib>Torres, Joeluis Cerutti</creatorcontrib><creatorcontrib>Soucase, Bernabé Mari</creatorcontrib><creatorcontrib>Palacios, Pablo</creatorcontrib><creatorcontrib>Lefdil, Mohammed Abd</creatorcontrib><creatorcontrib>Compañ, Vicente</creatorcontrib><title>The Structural and Electrochemical Properties of CuCoO2 Crystalline Nanopowders and Thin Films: Conductivity Experimental Analysis and Insights from Density Functional Theory Calculations</title><title>Nanomaterials (Basel, Switzerland)</title><description>A novel manufacturing process is presented for producing nanopowders and thin films of CuCoO2 (CCO) material. This process utilizes three cost-effective synthesis methods: hydrothermal, sol-gel, and solid-state reactions. The resulting delafossite CuCoO2 samples were deposited onto transparent substrates through spray pyrolysis, forming innovative thin films with a nanocrystal powder structure. Prior to the transformation into thin films, CuCoO2 powder was first produced using a low-cost approach. The precursors for both powders and thin films were deposited onto glass surfaces using a spray pyrolysis process, and their characteristics were examined through X-ray diffraction, scanning electron microscopy, HR-TEM, UV-visible spectrophotometry, and electrochemical impedance spectroscopy (EIS) analyses were conducted to determine the conductivity in the transversal direction of this groundbreaking material for solar cell applications. On the other hand, the sheet resistance of the samples was investigated using the four-probe method to obtain the sheet resistivity and then calculate the in-plane conductivity of the samples. We also investigated the aging characteristics of different precursors with varying durations. The functional properties of CuCoO2 samples were explored by studying chelating agent and precursor solution aging periods using Density Functional Theory calculations (DFT). A complementary Density Functional Theory study was also performed in order to evaluate the electronic structure of this compound. Resuming, this study thoroughly discusses the synthesis of delafossite powders and their conversion into thin films, which hold potential as hole transport layers in transparent optoelectronic devices.</description><subject>Aging</subject><subject>Caustic soda</subject><subject>Chelating agents</subject><subject>Chelation</subject><subject>Conductivity</subject><subject>delafossite</subject><subject>Density functional theory</subject><subject>EIS</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electronic structure</subject><subject>Glass substrates</subject><subject>Humidity</subject><subject>Investigations</subject><subject>Manufacturing industry</subject><subject>Mathematical analysis</subject><subject>Nanocrystals</subject><subject>Nitrates</subject><subject>Optoelectronic devices</subject><subject>Photovoltaic cells</subject><subject>powder</subject><subject>Precursors</subject><subject>Pyrolysis</subject><subject>Scanning electron microscopy</subject><subject>Sol-gel processes</subject><subject>Solar cells</subject><subject>Spectrophotometry</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spray pyrolysis</subject><subject>Substrates</subject><subject>Synthesis</subject><subject>Temperature</subject><subject>Thin films</subject><subject>X-ray diffraction</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1u1DAQgCMEolXpjQewxIUDC_FfEnNBVboLK1UUieVsOc541yvHXuyksM_Gy-FtKtTii-3xN5_GoymK17h8T6koP3jlA6a4IhSTZ8U5KWuxYELg54_OZ8VlSvsyL4Fpw-nL4ozWFS0bUZ0XfzY7QN_HOOlxisoh5Xu0dKDHGPQOBqtz7FsMB4ijhYSCQe3UhluC2nhMo3LOekBfcxWH8KuHmO4Fm531aGXdkD6iNvg-y-2dHY9o-TuL7AA-Z6Irr9wx2Tll7ZPd7saETAwDuoZ8zfxq8jk1ZDA7IcQjapXTk1OnYHpVvDDKJbh82C-KH6vlpv2yuLn9vG6vbhaa8WpcNKoSgjFDVEeoLk3NewVGcNE3wI1pdMkIZbSETmsBVcawFoRCD3VHKdT0oljP3j6ovTzkD6h4lEFZeR8IcStVbo92IEHoHhPBgPGGdaRvCKtM1xmq60oxTbLr0-w6TN0Avc6tyG1_In364u1ObsOdxCXjoqY8G94-GGL4OUEa5WCTBueUhzAlSRpeN6zhrMrom__QfZhi7uZMMUw5PlHvZkrHkFIE868aXMrTlMnHU0b_AjtNyTs</recordid><startdate>20230811</startdate><enddate>20230811</enddate><creator>Chfii, Hasnae</creator><creator>Bouich, Amal</creator><creator>Andrio, Andreu</creator><creator>Torres, Joeluis Cerutti</creator><creator>Soucase, Bernabé Mari</creator><creator>Palacios, Pablo</creator><creator>Lefdil, Mohammed Abd</creator><creator>Compañ, Vicente</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0001-419X</orcidid><orcidid>https://orcid.org/0000-0001-6745-8831</orcidid><orcidid>https://orcid.org/0000-0001-7867-8880</orcidid><orcidid>https://orcid.org/0000-0001-8233-7472</orcidid><orcidid>https://orcid.org/0000-0003-2805-103X</orcidid></search><sort><creationdate>20230811</creationdate><title>The Structural and Electrochemical Properties of CuCoO2 Crystalline Nanopowders and Thin Films: Conductivity Experimental Analysis and Insights from Density Functional Theory Calculations</title><author>Chfii, Hasnae ; Bouich, Amal ; Andrio, Andreu ; Torres, Joeluis Cerutti ; Soucase, Bernabé Mari ; Palacios, Pablo ; Lefdil, Mohammed Abd ; Compañ, Vicente</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-8a69944f2ab23c0f75daef959d8e5ff8c0423430ebcc9e62ab1c923ede7b33e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aging</topic><topic>Caustic soda</topic><topic>Chelating agents</topic><topic>Chelation</topic><topic>Conductivity</topic><topic>delafossite</topic><topic>Density functional theory</topic><topic>EIS</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electronic structure</topic><topic>Glass substrates</topic><topic>Humidity</topic><topic>Investigations</topic><topic>Manufacturing industry</topic><topic>Mathematical analysis</topic><topic>Nanocrystals</topic><topic>Nitrates</topic><topic>Optoelectronic devices</topic><topic>Photovoltaic cells</topic><topic>powder</topic><topic>Precursors</topic><topic>Pyrolysis</topic><topic>Scanning electron microscopy</topic><topic>Sol-gel processes</topic><topic>Solar cells</topic><topic>Spectrophotometry</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spray pyrolysis</topic><topic>Substrates</topic><topic>Synthesis</topic><topic>Temperature</topic><topic>Thin films</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chfii, Hasnae</creatorcontrib><creatorcontrib>Bouich, Amal</creatorcontrib><creatorcontrib>Andrio, Andreu</creatorcontrib><creatorcontrib>Torres, Joeluis Cerutti</creatorcontrib><creatorcontrib>Soucase, Bernabé Mari</creatorcontrib><creatorcontrib>Palacios, Pablo</creatorcontrib><creatorcontrib>Lefdil, Mohammed Abd</creatorcontrib><creatorcontrib>Compañ, Vicente</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chfii, Hasnae</au><au>Bouich, Amal</au><au>Andrio, Andreu</au><au>Torres, Joeluis Cerutti</au><au>Soucase, Bernabé Mari</au><au>Palacios, Pablo</au><au>Lefdil, Mohammed Abd</au><au>Compañ, Vicente</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structural and Electrochemical Properties of CuCoO2 Crystalline Nanopowders and Thin Films: Conductivity Experimental Analysis and Insights from Density Functional Theory Calculations</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2023-08-11</date><risdate>2023</risdate><volume>13</volume><issue>16</issue><spage>2312</spage><pages>2312-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>A novel manufacturing process is presented for producing nanopowders and thin films of CuCoO2 (CCO) material. This process utilizes three cost-effective synthesis methods: hydrothermal, sol-gel, and solid-state reactions. The resulting delafossite CuCoO2 samples were deposited onto transparent substrates through spray pyrolysis, forming innovative thin films with a nanocrystal powder structure. Prior to the transformation into thin films, CuCoO2 powder was first produced using a low-cost approach. The precursors for both powders and thin films were deposited onto glass surfaces using a spray pyrolysis process, and their characteristics were examined through X-ray diffraction, scanning electron microscopy, HR-TEM, UV-visible spectrophotometry, and electrochemical impedance spectroscopy (EIS) analyses were conducted to determine the conductivity in the transversal direction of this groundbreaking material for solar cell applications. On the other hand, the sheet resistance of the samples was investigated using the four-probe method to obtain the sheet resistivity and then calculate the in-plane conductivity of the samples. We also investigated the aging characteristics of different precursors with varying durations. The functional properties of CuCoO2 samples were explored by studying chelating agent and precursor solution aging periods using Density Functional Theory calculations (DFT). A complementary Density Functional Theory study was also performed in order to evaluate the electronic structure of this compound. Resuming, this study thoroughly discusses the synthesis of delafossite powders and their conversion into thin films, which hold potential as hole transport layers in transparent optoelectronic devices.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37630896</pmid><doi>10.3390/nano13162312</doi><orcidid>https://orcid.org/0000-0003-0001-419X</orcidid><orcidid>https://orcid.org/0000-0001-6745-8831</orcidid><orcidid>https://orcid.org/0000-0001-7867-8880</orcidid><orcidid>https://orcid.org/0000-0001-8233-7472</orcidid><orcidid>https://orcid.org/0000-0003-2805-103X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2023-08, Vol.13 (16), p.2312 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e9cd1294e4584b2d8246fbbf3c76a4c2 |
source | Publicly Available Content Database; PubMed Central |
subjects | Aging Caustic soda Chelating agents Chelation Conductivity delafossite Density functional theory EIS Electrochemical analysis Electrochemical impedance spectroscopy Electrochemistry Electrodes Electronic structure Glass substrates Humidity Investigations Manufacturing industry Mathematical analysis Nanocrystals Nitrates Optoelectronic devices Photovoltaic cells powder Precursors Pyrolysis Scanning electron microscopy Sol-gel processes Solar cells Spectrophotometry Spectroscopy Spectrum analysis Spray pyrolysis Substrates Synthesis Temperature Thin films X-ray diffraction |
title | The Structural and Electrochemical Properties of CuCoO2 Crystalline Nanopowders and Thin Films: Conductivity Experimental Analysis and Insights from Density Functional Theory Calculations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structural%20and%20Electrochemical%20Properties%20of%20CuCoO2%20Crystalline%20Nanopowders%20and%20Thin%20Films:%20Conductivity%20Experimental%20Analysis%20and%20Insights%20from%20Density%20Functional%20Theory%20Calculations&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Chfii,%20Hasnae&rft.date=2023-08-11&rft.volume=13&rft.issue=16&rft.spage=2312&rft.pages=2312-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano13162312&rft_dat=%3Cproquest_doaj_%3E2857413516%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-8a69944f2ab23c0f75daef959d8e5ff8c0423430ebcc9e62ab1c923ede7b33e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2857413516&rft_id=info:pmid/37630896&rfr_iscdi=true |