Loading…
Isolation and characterization of extracellular vesicles from biotechnologically important fungus Aureobasidium pullulans
Extracellular vesicles (EVs) are increasingly recognized as an important mechanism for cell-cell interactions. Their role in fungi is still poorly understood and they have been isolated from only a handful of species. Here, we isolated and characterized EVs from Aureobasidium pullulans, a biotechnol...
Saved in:
Published in: | Fungal biology and biotechnology 2022-11, Vol.9 (1), p.16-17, Article 16 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Extracellular vesicles (EVs) are increasingly recognized as an important mechanism for cell-cell interactions. Their role in fungi is still poorly understood and they have been isolated from only a handful of species. Here, we isolated and characterized EVs from Aureobasidium pullulans, a biotechnologically important black yeast-like fungus that is increasingly used for biocontrol of phytopathogenic fungi and bacteria. After optimization of the isolation protocol, characterization of EVs from A. pullulans by transmission electron microscopy (TEM) revealed a typical cup-shaped morphology and different subpopulations of EVs. These results were confirmed by nanoparticle tracking analysis (NTA), which revealed that A. pullulans produced 6.1 × 10
nanoparticles per milliliter of culture medium. Proteomic analysis of EVs detected 642 proteins. A small fraction of them had signal peptides for secretion and transmembrane domains. Proteins characteristic of different synthesis pathways were found, suggesting that EVs are synthesized by multiple pathways in A. pullulans. Enrichment analysis using Gene Ontology showed that most of the proteins found in the EVs were associated with primary metabolism. When sequencing the small RNA fraction of A. pullulans EVs, we found two hypothetical novel mil-RNAs. Finally, we tested the biocontrol potential of EVs from A. pullulans. The EVs did not inhibit the germination of spores of three important phytopathogenic fungi-Botrytis cinerea, Colletotrichum acutatum, and Penicillium expansum. However, exposure of grown cultures of C. acutatum and P. expansum to A. pullulans EVs resulted in visible changes in morphology of colonies. These preliminary results suggest that EVs may be part of the antagonistic activity of A. pullulans, which is so far only partially understood. Thus, the first isolation and characterization of EVs from A. pullulans provides a starting point for further studies of EVs in the biotechnologically important traits of the biocontrol black fungus A. pullulans in particular and in the biological role of fungal EVs in general. |
---|---|
ISSN: | 2054-3085 2054-3085 |
DOI: | 10.1186/s40694-022-00146-7 |