Loading…

Numerical simulation of foundation pit dewatering using horizontal seepage reducing body

Groundwater level has to be lowered during deep excavation. A vertical curtain is usually adopted to control the drawdown inside and outside a foundation pit in a built-up area. However, the cost and working difficulty increases substantially with the rise in depth of vertical curtains. In the manus...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2022-01, Vol.12 (1), p.1397-1397, Article 1397
Main Authors: Wang, Jianxiu, Long, Yanxia, Zhao, Yu, Liu, Xiaotian, Pan, Weiqiang, Qu, Jianxun, Wang, Hanmei, Shi, Yujin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Groundwater level has to be lowered during deep excavation. A vertical curtain is usually adopted to control the drawdown inside and outside a foundation pit in a built-up area. However, the cost and working difficulty increases substantially with the rise in depth of vertical curtains. In the manuscript, a man-made horizontal seepage reducing body (HSRB) was introduced to shorten the vertical curtain depth and control drawdown. With the No. 4 shaft foundation pit of Guangyuan Project, Shanghai as background, HSRB was proposed in foundation pit dewatering. Microbially induced carbonate precipitation grouting technology was recommended to form an environment-friendly HSRB. Numerical method was used to simulate and understand the influence of position, thickness, and hydraulic conductivity of HSRB on groundwater level. The non-separated HSRB was better than the separate HSRB. Decreasing HSRB hydraulic conductivity was better than increasing HSRB depth. Four seepage modes were summarized considering vertical curtain penetration conditions into multi-aquifer, and the fifth seepage mode was formed for vertical curtain using man-made HSRB, which can be referred by similar engineering applications.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-05348-y