Loading…

Testing for Level–Degree Interaction Effects in Two-Factor Fixed-Effects ANOVA When the Levels of Only One Factor Are Ordered

In testing for main effects, the use of orthogonal contrasts for balanced designs with the factor levels not ordered is well known. Here, we consider two-factor fixed-effects ANOVA with the levels of one factor ordered and one not ordered. The objective is to extend the idea of decomposing the main...

Full description

Saved in:
Bibliographic Details
Published in:Stats (Basel, Switzerland) Switzerland), 2024-06, Vol.7 (2), p.481-491
Main Authors: Rayner, J. C. W., Livingston, G. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c254t-15d5debe18f48df0195b11abf16fcedf61ee6dba6431cc11d1ec2cdb8d570ce43
container_end_page 491
container_issue 2
container_start_page 481
container_title Stats (Basel, Switzerland)
container_volume 7
creator Rayner, J. C. W.
Livingston, G. C.
description In testing for main effects, the use of orthogonal contrasts for balanced designs with the factor levels not ordered is well known. Here, we consider two-factor fixed-effects ANOVA with the levels of one factor ordered and one not ordered. The objective is to extend the idea of decomposing the main effect to decomposing the interaction. This is achieved by defining level–degree coefficients and testing if they are zero using permutation testing. These tests give clear insights into what may be causing a significant interaction, even for the unbalanced model.
doi_str_mv 10.3390/stats7020029
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ea3e8bc33436467386d7c5ba7a5f8735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ea3e8bc33436467386d7c5ba7a5f8735</doaj_id><sourcerecordid>3072667504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-15d5debe18f48df0195b11abf16fcedf61ee6dba6431cc11d1ec2cdb8d570ce43</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVMCND7DElYAdx3ZyrIBCpYpcyuNmOfa6TRVisM2jJ_gH_pAvIaUFcdldzc7OrHaT5JDgE0pLfBqiikHgDOOs3EoGGRMkLTG73_5X7yYHISxwTxG8zIt8kLxPIcSmmyHrPJrAC7RfH5_nMPMAaNxF8ErHxnXowlrQMaCmQ9NXl456uB8YNW9g0t_e8Lq6HaK7OXQozmGtFpCzqOraZR8AbcaGHlDlDXgw-8mOVW2Ag03eS25GF9Ozq3RSXY7PhpNUZyyPKWGGGaiBFDYvjMWkZDUhqraEWw3GcgLATa14TonWhBgCOtOmLgwTWENO95LxWtc4tZCPvnlQfimdauQP4PxMKh8b3YIERaGoNaU55TkXtOBGaFYroZgtBGW91tFa69G7p-f-fnLhnn3Xry8pFhnnguGV4_Gapb0LwYP9cyVYrj4m_3-MfgOsB4sm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072667504</pqid></control><display><type>article</type><title>Testing for Level–Degree Interaction Effects in Two-Factor Fixed-Effects ANOVA When the Levels of Only One Factor Are Ordered</title><source>Publicly Available Content Database</source><source>ABI/INFORM Global</source><creator>Rayner, J. C. W. ; Livingston, G. C.</creator><creatorcontrib>Rayner, J. C. W. ; Livingston, G. C.</creatorcontrib><description>In testing for main effects, the use of orthogonal contrasts for balanced designs with the factor levels not ordered is well known. Here, we consider two-factor fixed-effects ANOVA with the levels of one factor ordered and one not ordered. The objective is to extend the idea of decomposing the main effect to decomposing the interaction. This is achieved by defining level–degree coefficients and testing if they are zero using permutation testing. These tests give clear insights into what may be causing a significant interaction, even for the unbalanced model.</description><identifier>ISSN: 2571-905X</identifier><identifier>EISSN: 2571-905X</identifier><identifier>DOI: 10.3390/stats7020029</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>balanced and unbalanced designs ; Eigenvalues ; Eigenvectors ; exploratory data analysis tool ; orthogonal contrasts ; orthogonal polynomials ; pairwise comparisons ; Statistics</subject><ispartof>Stats (Basel, Switzerland), 2024-06, Vol.7 (2), p.481-491</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-15d5debe18f48df0195b11abf16fcedf61ee6dba6431cc11d1ec2cdb8d570ce43</cites><orcidid>0000-0002-9459-289X ; 0000-0003-4987-0026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3072667504/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3072667504?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,25753,27924,27925,36060,37012,44363,44590,74895,75126</link.rule.ids></links><search><creatorcontrib>Rayner, J. C. W.</creatorcontrib><creatorcontrib>Livingston, G. C.</creatorcontrib><title>Testing for Level–Degree Interaction Effects in Two-Factor Fixed-Effects ANOVA When the Levels of Only One Factor Are Ordered</title><title>Stats (Basel, Switzerland)</title><description>In testing for main effects, the use of orthogonal contrasts for balanced designs with the factor levels not ordered is well known. Here, we consider two-factor fixed-effects ANOVA with the levels of one factor ordered and one not ordered. The objective is to extend the idea of decomposing the main effect to decomposing the interaction. This is achieved by defining level–degree coefficients and testing if they are zero using permutation testing. These tests give clear insights into what may be causing a significant interaction, even for the unbalanced model.</description><subject>balanced and unbalanced designs</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>exploratory data analysis tool</subject><subject>orthogonal contrasts</subject><subject>orthogonal polynomials</subject><subject>pairwise comparisons</subject><subject>Statistics</subject><issn>2571-905X</issn><issn>2571-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVMCND7DElYAdx3ZyrIBCpYpcyuNmOfa6TRVisM2jJ_gH_pAvIaUFcdldzc7OrHaT5JDgE0pLfBqiikHgDOOs3EoGGRMkLTG73_5X7yYHISxwTxG8zIt8kLxPIcSmmyHrPJrAC7RfH5_nMPMAaNxF8ErHxnXowlrQMaCmQ9NXl456uB8YNW9g0t_e8Lq6HaK7OXQozmGtFpCzqOraZR8AbcaGHlDlDXgw-8mOVW2Ag03eS25GF9Ozq3RSXY7PhpNUZyyPKWGGGaiBFDYvjMWkZDUhqraEWw3GcgLATa14TonWhBgCOtOmLgwTWENO95LxWtc4tZCPvnlQfimdauQP4PxMKh8b3YIERaGoNaU55TkXtOBGaFYroZgtBGW91tFa69G7p-f-fnLhnn3Xry8pFhnnguGV4_Gapb0LwYP9cyVYrj4m_3-MfgOsB4sm</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Rayner, J. C. W.</creator><creator>Livingston, G. C.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9459-289X</orcidid><orcidid>https://orcid.org/0000-0003-4987-0026</orcidid></search><sort><creationdate>20240601</creationdate><title>Testing for Level–Degree Interaction Effects in Two-Factor Fixed-Effects ANOVA When the Levels of Only One Factor Are Ordered</title><author>Rayner, J. C. W. ; Livingston, G. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-15d5debe18f48df0195b11abf16fcedf61ee6dba6431cc11d1ec2cdb8d570ce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>balanced and unbalanced designs</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>exploratory data analysis tool</topic><topic>orthogonal contrasts</topic><topic>orthogonal polynomials</topic><topic>pairwise comparisons</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rayner, J. C. W.</creatorcontrib><creatorcontrib>Livingston, G. C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Stats (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rayner, J. C. W.</au><au>Livingston, G. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing for Level–Degree Interaction Effects in Two-Factor Fixed-Effects ANOVA When the Levels of Only One Factor Are Ordered</atitle><jtitle>Stats (Basel, Switzerland)</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>7</volume><issue>2</issue><spage>481</spage><epage>491</epage><pages>481-491</pages><issn>2571-905X</issn><eissn>2571-905X</eissn><abstract>In testing for main effects, the use of orthogonal contrasts for balanced designs with the factor levels not ordered is well known. Here, we consider two-factor fixed-effects ANOVA with the levels of one factor ordered and one not ordered. The objective is to extend the idea of decomposing the main effect to decomposing the interaction. This is achieved by defining level–degree coefficients and testing if they are zero using permutation testing. These tests give clear insights into what may be causing a significant interaction, even for the unbalanced model.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/stats7020029</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9459-289X</orcidid><orcidid>https://orcid.org/0000-0003-4987-0026</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2571-905X
ispartof Stats (Basel, Switzerland), 2024-06, Vol.7 (2), p.481-491
issn 2571-905X
2571-905X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ea3e8bc33436467386d7c5ba7a5f8735
source Publicly Available Content Database; ABI/INFORM Global
subjects balanced and unbalanced designs
Eigenvalues
Eigenvectors
exploratory data analysis tool
orthogonal contrasts
orthogonal polynomials
pairwise comparisons
Statistics
title Testing for Level–Degree Interaction Effects in Two-Factor Fixed-Effects ANOVA When the Levels of Only One Factor Are Ordered
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20for%20Level%E2%80%93Degree%20Interaction%20Effects%20in%20Two-Factor%20Fixed-Effects%20ANOVA%20When%20the%20Levels%20of%20Only%20One%20Factor%20Are%20Ordered&rft.jtitle=Stats%20(Basel,%20Switzerland)&rft.au=Rayner,%20J.%20C.%20W.&rft.date=2024-06-01&rft.volume=7&rft.issue=2&rft.spage=481&rft.epage=491&rft.pages=481-491&rft.issn=2571-905X&rft.eissn=2571-905X&rft_id=info:doi/10.3390/stats7020029&rft_dat=%3Cproquest_doaj_%3E3072667504%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c254t-15d5debe18f48df0195b11abf16fcedf61ee6dba6431cc11d1ec2cdb8d570ce43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072667504&rft_id=info:pmid/&rfr_iscdi=true