Loading…
Testing for Level–Degree Interaction Effects in Two-Factor Fixed-Effects ANOVA When the Levels of Only One Factor Are Ordered
In testing for main effects, the use of orthogonal contrasts for balanced designs with the factor levels not ordered is well known. Here, we consider two-factor fixed-effects ANOVA with the levels of one factor ordered and one not ordered. The objective is to extend the idea of decomposing the main...
Saved in:
Published in: | Stats (Basel, Switzerland) Switzerland), 2024-06, Vol.7 (2), p.481-491 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c254t-15d5debe18f48df0195b11abf16fcedf61ee6dba6431cc11d1ec2cdb8d570ce43 |
container_end_page | 491 |
container_issue | 2 |
container_start_page | 481 |
container_title | Stats (Basel, Switzerland) |
container_volume | 7 |
creator | Rayner, J. C. W. Livingston, G. C. |
description | In testing for main effects, the use of orthogonal contrasts for balanced designs with the factor levels not ordered is well known. Here, we consider two-factor fixed-effects ANOVA with the levels of one factor ordered and one not ordered. The objective is to extend the idea of decomposing the main effect to decomposing the interaction. This is achieved by defining level–degree coefficients and testing if they are zero using permutation testing. These tests give clear insights into what may be causing a significant interaction, even for the unbalanced model. |
doi_str_mv | 10.3390/stats7020029 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ea3e8bc33436467386d7c5ba7a5f8735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ea3e8bc33436467386d7c5ba7a5f8735</doaj_id><sourcerecordid>3072667504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-15d5debe18f48df0195b11abf16fcedf61ee6dba6431cc11d1ec2cdb8d570ce43</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVMCND7DElYAdx3ZyrIBCpYpcyuNmOfa6TRVisM2jJ_gH_pAvIaUFcdldzc7OrHaT5JDgE0pLfBqiikHgDOOs3EoGGRMkLTG73_5X7yYHISxwTxG8zIt8kLxPIcSmmyHrPJrAC7RfH5_nMPMAaNxF8ErHxnXowlrQMaCmQ9NXl456uB8YNW9g0t_e8Lq6HaK7OXQozmGtFpCzqOraZR8AbcaGHlDlDXgw-8mOVW2Ag03eS25GF9Ozq3RSXY7PhpNUZyyPKWGGGaiBFDYvjMWkZDUhqraEWw3GcgLATa14TonWhBgCOtOmLgwTWENO95LxWtc4tZCPvnlQfimdauQP4PxMKh8b3YIERaGoNaU55TkXtOBGaFYroZgtBGW91tFa69G7p-f-fnLhnn3Xry8pFhnnguGV4_Gapb0LwYP9cyVYrj4m_3-MfgOsB4sm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072667504</pqid></control><display><type>article</type><title>Testing for Level–Degree Interaction Effects in Two-Factor Fixed-Effects ANOVA When the Levels of Only One Factor Are Ordered</title><source>Publicly Available Content Database</source><source>ABI/INFORM Global</source><creator>Rayner, J. C. W. ; Livingston, G. C.</creator><creatorcontrib>Rayner, J. C. W. ; Livingston, G. C.</creatorcontrib><description>In testing for main effects, the use of orthogonal contrasts for balanced designs with the factor levels not ordered is well known. Here, we consider two-factor fixed-effects ANOVA with the levels of one factor ordered and one not ordered. The objective is to extend the idea of decomposing the main effect to decomposing the interaction. This is achieved by defining level–degree coefficients and testing if they are zero using permutation testing. These tests give clear insights into what may be causing a significant interaction, even for the unbalanced model.</description><identifier>ISSN: 2571-905X</identifier><identifier>EISSN: 2571-905X</identifier><identifier>DOI: 10.3390/stats7020029</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>balanced and unbalanced designs ; Eigenvalues ; Eigenvectors ; exploratory data analysis tool ; orthogonal contrasts ; orthogonal polynomials ; pairwise comparisons ; Statistics</subject><ispartof>Stats (Basel, Switzerland), 2024-06, Vol.7 (2), p.481-491</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-15d5debe18f48df0195b11abf16fcedf61ee6dba6431cc11d1ec2cdb8d570ce43</cites><orcidid>0000-0002-9459-289X ; 0000-0003-4987-0026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3072667504/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3072667504?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,25753,27924,27925,36060,37012,44363,44590,74895,75126</link.rule.ids></links><search><creatorcontrib>Rayner, J. C. W.</creatorcontrib><creatorcontrib>Livingston, G. C.</creatorcontrib><title>Testing for Level–Degree Interaction Effects in Two-Factor Fixed-Effects ANOVA When the Levels of Only One Factor Are Ordered</title><title>Stats (Basel, Switzerland)</title><description>In testing for main effects, the use of orthogonal contrasts for balanced designs with the factor levels not ordered is well known. Here, we consider two-factor fixed-effects ANOVA with the levels of one factor ordered and one not ordered. The objective is to extend the idea of decomposing the main effect to decomposing the interaction. This is achieved by defining level–degree coefficients and testing if they are zero using permutation testing. These tests give clear insights into what may be causing a significant interaction, even for the unbalanced model.</description><subject>balanced and unbalanced designs</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>exploratory data analysis tool</subject><subject>orthogonal contrasts</subject><subject>orthogonal polynomials</subject><subject>pairwise comparisons</subject><subject>Statistics</subject><issn>2571-905X</issn><issn>2571-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVMCND7DElYAdx3ZyrIBCpYpcyuNmOfa6TRVisM2jJ_gH_pAvIaUFcdldzc7OrHaT5JDgE0pLfBqiikHgDOOs3EoGGRMkLTG73_5X7yYHISxwTxG8zIt8kLxPIcSmmyHrPJrAC7RfH5_nMPMAaNxF8ErHxnXowlrQMaCmQ9NXl456uB8YNW9g0t_e8Lq6HaK7OXQozmGtFpCzqOraZR8AbcaGHlDlDXgw-8mOVW2Ag03eS25GF9Ozq3RSXY7PhpNUZyyPKWGGGaiBFDYvjMWkZDUhqraEWw3GcgLATa14TonWhBgCOtOmLgwTWENO95LxWtc4tZCPvnlQfimdauQP4PxMKh8b3YIERaGoNaU55TkXtOBGaFYroZgtBGW91tFa69G7p-f-fnLhnn3Xry8pFhnnguGV4_Gapb0LwYP9cyVYrj4m_3-MfgOsB4sm</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Rayner, J. C. W.</creator><creator>Livingston, G. C.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9459-289X</orcidid><orcidid>https://orcid.org/0000-0003-4987-0026</orcidid></search><sort><creationdate>20240601</creationdate><title>Testing for Level–Degree Interaction Effects in Two-Factor Fixed-Effects ANOVA When the Levels of Only One Factor Are Ordered</title><author>Rayner, J. C. W. ; Livingston, G. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-15d5debe18f48df0195b11abf16fcedf61ee6dba6431cc11d1ec2cdb8d570ce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>balanced and unbalanced designs</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>exploratory data analysis tool</topic><topic>orthogonal contrasts</topic><topic>orthogonal polynomials</topic><topic>pairwise comparisons</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rayner, J. C. W.</creatorcontrib><creatorcontrib>Livingston, G. C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Stats (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rayner, J. C. W.</au><au>Livingston, G. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing for Level–Degree Interaction Effects in Two-Factor Fixed-Effects ANOVA When the Levels of Only One Factor Are Ordered</atitle><jtitle>Stats (Basel, Switzerland)</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>7</volume><issue>2</issue><spage>481</spage><epage>491</epage><pages>481-491</pages><issn>2571-905X</issn><eissn>2571-905X</eissn><abstract>In testing for main effects, the use of orthogonal contrasts for balanced designs with the factor levels not ordered is well known. Here, we consider two-factor fixed-effects ANOVA with the levels of one factor ordered and one not ordered. The objective is to extend the idea of decomposing the main effect to decomposing the interaction. This is achieved by defining level–degree coefficients and testing if they are zero using permutation testing. These tests give clear insights into what may be causing a significant interaction, even for the unbalanced model.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/stats7020029</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9459-289X</orcidid><orcidid>https://orcid.org/0000-0003-4987-0026</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2571-905X |
ispartof | Stats (Basel, Switzerland), 2024-06, Vol.7 (2), p.481-491 |
issn | 2571-905X 2571-905X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ea3e8bc33436467386d7c5ba7a5f8735 |
source | Publicly Available Content Database; ABI/INFORM Global |
subjects | balanced and unbalanced designs Eigenvalues Eigenvectors exploratory data analysis tool orthogonal contrasts orthogonal polynomials pairwise comparisons Statistics |
title | Testing for Level–Degree Interaction Effects in Two-Factor Fixed-Effects ANOVA When the Levels of Only One Factor Are Ordered |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20for%20Level%E2%80%93Degree%20Interaction%20Effects%20in%20Two-Factor%20Fixed-Effects%20ANOVA%20When%20the%20Levels%20of%20Only%20One%20Factor%20Are%20Ordered&rft.jtitle=Stats%20(Basel,%20Switzerland)&rft.au=Rayner,%20J.%20C.%20W.&rft.date=2024-06-01&rft.volume=7&rft.issue=2&rft.spage=481&rft.epage=491&rft.pages=481-491&rft.issn=2571-905X&rft.eissn=2571-905X&rft_id=info:doi/10.3390/stats7020029&rft_dat=%3Cproquest_doaj_%3E3072667504%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c254t-15d5debe18f48df0195b11abf16fcedf61ee6dba6431cc11d1ec2cdb8d570ce43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072667504&rft_id=info:pmid/&rfr_iscdi=true |