Loading…
CK-Encoder: Enhanced Language Representation for Sentence Similarity
In recent years, neural networks have been widely used in natural language processing, especially in sentence similarity modeling. Most of the previous studies focused on the current sentence, ignoring the commonsense knowledge related to the current sentence in the task of sentence similarity model...
Saved in:
Published in: | International journal of crowd science 2022-04, Vol.6 (1), p.17-22 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2721-847853b5fff3d5f2f2e4422621aed5246cd56b31d3d987cfd6c22c64a8dfb8cc3 |
---|---|
cites | |
container_end_page | 22 |
container_issue | 1 |
container_start_page | 17 |
container_title | International journal of crowd science |
container_volume | 6 |
creator | Jiang, Tao Kang, Fengjian Guo, Wei He, Wei Liu, Lei Lu, Xudong Xu, Yonghui Cui, Lizhen |
description | In recent years, neural networks have been widely used in natural language processing, especially in sentence similarity modeling. Most of the previous studies focused on the current sentence, ignoring the commonsense knowledge related to the current sentence in the task of sentence similarity modeling. Commonsense knowledge can be remarkably useful for understanding the semantics of sentences. CK-Encoder, which can effectively acquire commonsense knowledge to improve the performance of sentence similarity modeling, is proposed in this paper. Specifically, the model first generates a commonsense knowledge graph of the input sentence and calculates this graph by using the graph convolution network. In addition, CKER, a framework combining CK-Encoder and sentence encoder, is introduced. Experiments on two sentence similarity tasks have demonstrated that CK-Encoder can effectively acquire commonsense knowledge to improve the capability of a model to understand sentences. |
doi_str_mv | 10.26599/IJCS.2022.9100001 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ea40b129d33e4a5594f8913cf21b34fa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ea40b129d33e4a5594f8913cf21b34fa</doaj_id><sourcerecordid>oai_doaj_org_article_ea40b129d33e4a5594f8913cf21b34fa</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2721-847853b5fff3d5f2f2e4422621aed5246cd56b31d3d987cfd6c22c64a8dfb8cc3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EElXpD7DKD6TE40dsdigUKFRCorC2Jn6UVG1cOWHRvyd9CDGbmTu6OotDyC0tpiCF1nfz12o5hQJgqmkxDL0gI2Ba5SVofvnvviaTrlsPDSil5qUekcfqLZ-1Njqf7rNZ-42t9S5bYLv6wZXPPvwu-c63PfZNbLMQU7Yckh9a2bLZNhtMTb-_IVcBN52fnPeYfD3NPquXfPH-PK8eFrmFEmiueKkEq0UIgTkRIIDnHEACRe8EcGmdkDWjjjmtShuctABWclQu1MpaNibzE9dFXJtdaraY9iZiY46PmFYGU9_YjTceeVFT0I4xz1EIzYPSlNkAtGY84MCCE8um2HXJhz8eLcxRqzloNQet5qyV_QK52mph</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CK-Encoder: Enhanced Language Representation for Sentence Similarity</title><source>Emerald Open Access</source><source>IEEE Xplore</source><creator>Jiang, Tao ; Kang, Fengjian ; Guo, Wei ; He, Wei ; Liu, Lei ; Lu, Xudong ; Xu, Yonghui ; Cui, Lizhen</creator><creatorcontrib>Jiang, Tao ; Kang, Fengjian ; Guo, Wei ; He, Wei ; Liu, Lei ; Lu, Xudong ; Xu, Yonghui ; Cui, Lizhen</creatorcontrib><description>In recent years, neural networks have been widely used in natural language processing, especially in sentence similarity modeling. Most of the previous studies focused on the current sentence, ignoring the commonsense knowledge related to the current sentence in the task of sentence similarity modeling. Commonsense knowledge can be remarkably useful for understanding the semantics of sentences. CK-Encoder, which can effectively acquire commonsense knowledge to improve the performance of sentence similarity modeling, is proposed in this paper. Specifically, the model first generates a commonsense knowledge graph of the input sentence and calculates this graph by using the graph convolution network. In addition, CKER, a framework combining CK-Encoder and sentence encoder, is introduced. Experiments on two sentence similarity tasks have demonstrated that CK-Encoder can effectively acquire commonsense knowledge to improve the capability of a model to understand sentences.</description><identifier>ISSN: 2398-7294</identifier><identifier>EISSN: 2398-7294</identifier><identifier>DOI: 10.26599/IJCS.2022.9100001</identifier><language>eng</language><publisher>Tsinghua University Press</publisher><subject>ck-encoder ; commonsense knowledge ; sentence similarity</subject><ispartof>International journal of crowd science, 2022-04, Vol.6 (1), p.17-22</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2721-847853b5fff3d5f2f2e4422621aed5246cd56b31d3d987cfd6c22c64a8dfb8cc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Kang, Fengjian</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Lu, Xudong</creatorcontrib><creatorcontrib>Xu, Yonghui</creatorcontrib><creatorcontrib>Cui, Lizhen</creatorcontrib><title>CK-Encoder: Enhanced Language Representation for Sentence Similarity</title><title>International journal of crowd science</title><description>In recent years, neural networks have been widely used in natural language processing, especially in sentence similarity modeling. Most of the previous studies focused on the current sentence, ignoring the commonsense knowledge related to the current sentence in the task of sentence similarity modeling. Commonsense knowledge can be remarkably useful for understanding the semantics of sentences. CK-Encoder, which can effectively acquire commonsense knowledge to improve the performance of sentence similarity modeling, is proposed in this paper. Specifically, the model first generates a commonsense knowledge graph of the input sentence and calculates this graph by using the graph convolution network. In addition, CKER, a framework combining CK-Encoder and sentence encoder, is introduced. Experiments on two sentence similarity tasks have demonstrated that CK-Encoder can effectively acquire commonsense knowledge to improve the capability of a model to understand sentences.</description><subject>ck-encoder</subject><subject>commonsense knowledge</subject><subject>sentence similarity</subject><issn>2398-7294</issn><issn>2398-7294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkMtOwzAQRS0EElXpD7DKD6TE40dsdigUKFRCorC2Jn6UVG1cOWHRvyd9CDGbmTu6OotDyC0tpiCF1nfz12o5hQJgqmkxDL0gI2Ba5SVofvnvviaTrlsPDSil5qUekcfqLZ-1Njqf7rNZ-42t9S5bYLv6wZXPPvwu-c63PfZNbLMQU7Yckh9a2bLZNhtMTb-_IVcBN52fnPeYfD3NPquXfPH-PK8eFrmFEmiueKkEq0UIgTkRIIDnHEACRe8EcGmdkDWjjjmtShuctABWclQu1MpaNibzE9dFXJtdaraY9iZiY46PmFYGU9_YjTceeVFT0I4xz1EIzYPSlNkAtGY84MCCE8um2HXJhz8eLcxRqzloNQet5qyV_QK52mph</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Jiang, Tao</creator><creator>Kang, Fengjian</creator><creator>Guo, Wei</creator><creator>He, Wei</creator><creator>Liu, Lei</creator><creator>Lu, Xudong</creator><creator>Xu, Yonghui</creator><creator>Cui, Lizhen</creator><general>Tsinghua University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20220401</creationdate><title>CK-Encoder: Enhanced Language Representation for Sentence Similarity</title><author>Jiang, Tao ; Kang, Fengjian ; Guo, Wei ; He, Wei ; Liu, Lei ; Lu, Xudong ; Xu, Yonghui ; Cui, Lizhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2721-847853b5fff3d5f2f2e4422621aed5246cd56b31d3d987cfd6c22c64a8dfb8cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ck-encoder</topic><topic>commonsense knowledge</topic><topic>sentence similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Kang, Fengjian</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Lu, Xudong</creatorcontrib><creatorcontrib>Xu, Yonghui</creatorcontrib><creatorcontrib>Cui, Lizhen</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of crowd science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Tao</au><au>Kang, Fengjian</au><au>Guo, Wei</au><au>He, Wei</au><au>Liu, Lei</au><au>Lu, Xudong</au><au>Xu, Yonghui</au><au>Cui, Lizhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CK-Encoder: Enhanced Language Representation for Sentence Similarity</atitle><jtitle>International journal of crowd science</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>6</volume><issue>1</issue><spage>17</spage><epage>22</epage><pages>17-22</pages><issn>2398-7294</issn><eissn>2398-7294</eissn><abstract>In recent years, neural networks have been widely used in natural language processing, especially in sentence similarity modeling. Most of the previous studies focused on the current sentence, ignoring the commonsense knowledge related to the current sentence in the task of sentence similarity modeling. Commonsense knowledge can be remarkably useful for understanding the semantics of sentences. CK-Encoder, which can effectively acquire commonsense knowledge to improve the performance of sentence similarity modeling, is proposed in this paper. Specifically, the model first generates a commonsense knowledge graph of the input sentence and calculates this graph by using the graph convolution network. In addition, CKER, a framework combining CK-Encoder and sentence encoder, is introduced. Experiments on two sentence similarity tasks have demonstrated that CK-Encoder can effectively acquire commonsense knowledge to improve the capability of a model to understand sentences.</abstract><pub>Tsinghua University Press</pub><doi>10.26599/IJCS.2022.9100001</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2398-7294 |
ispartof | International journal of crowd science, 2022-04, Vol.6 (1), p.17-22 |
issn | 2398-7294 2398-7294 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ea40b129d33e4a5594f8913cf21b34fa |
source | Emerald Open Access; IEEE Xplore |
subjects | ck-encoder commonsense knowledge sentence similarity |
title | CK-Encoder: Enhanced Language Representation for Sentence Similarity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CK-Encoder:%20Enhanced%20Language%20Representation%20for%20Sentence%20Similarity&rft.jtitle=International%20journal%20of%20crowd%20science&rft.au=Jiang,%20Tao&rft.date=2022-04-01&rft.volume=6&rft.issue=1&rft.spage=17&rft.epage=22&rft.pages=17-22&rft.issn=2398-7294&rft.eissn=2398-7294&rft_id=info:doi/10.26599/IJCS.2022.9100001&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_ea40b129d33e4a5594f8913cf21b34fa%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2721-847853b5fff3d5f2f2e4422621aed5246cd56b31d3d987cfd6c22c64a8dfb8cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |