Loading…

CK-Encoder: Enhanced Language Representation for Sentence Similarity

In recent years, neural networks have been widely used in natural language processing, especially in sentence similarity modeling. Most of the previous studies focused on the current sentence, ignoring the commonsense knowledge related to the current sentence in the task of sentence similarity model...

Full description

Saved in:
Bibliographic Details
Published in:International journal of crowd science 2022-04, Vol.6 (1), p.17-22
Main Authors: Jiang, Tao, Kang, Fengjian, Guo, Wei, He, Wei, Liu, Lei, Lu, Xudong, Xu, Yonghui, Cui, Lizhen
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2721-847853b5fff3d5f2f2e4422621aed5246cd56b31d3d987cfd6c22c64a8dfb8cc3
cites
container_end_page 22
container_issue 1
container_start_page 17
container_title International journal of crowd science
container_volume 6
creator Jiang, Tao
Kang, Fengjian
Guo, Wei
He, Wei
Liu, Lei
Lu, Xudong
Xu, Yonghui
Cui, Lizhen
description In recent years, neural networks have been widely used in natural language processing, especially in sentence similarity modeling. Most of the previous studies focused on the current sentence, ignoring the commonsense knowledge related to the current sentence in the task of sentence similarity modeling. Commonsense knowledge can be remarkably useful for understanding the semantics of sentences. CK-Encoder, which can effectively acquire commonsense knowledge to improve the performance of sentence similarity modeling, is proposed in this paper. Specifically, the model first generates a commonsense knowledge graph of the input sentence and calculates this graph by using the graph convolution network. In addition, CKER, a framework combining CK-Encoder and sentence encoder, is introduced. Experiments on two sentence similarity tasks have demonstrated that CK-Encoder can effectively acquire commonsense knowledge to improve the capability of a model to understand sentences.
doi_str_mv 10.26599/IJCS.2022.9100001
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ea40b129d33e4a5594f8913cf21b34fa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ea40b129d33e4a5594f8913cf21b34fa</doaj_id><sourcerecordid>oai_doaj_org_article_ea40b129d33e4a5594f8913cf21b34fa</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2721-847853b5fff3d5f2f2e4422621aed5246cd56b31d3d987cfd6c22c64a8dfb8cc3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EElXpD7DKD6TE40dsdigUKFRCorC2Jn6UVG1cOWHRvyd9CDGbmTu6OotDyC0tpiCF1nfz12o5hQJgqmkxDL0gI2Ba5SVofvnvviaTrlsPDSil5qUekcfqLZ-1Njqf7rNZ-42t9S5bYLv6wZXPPvwu-c63PfZNbLMQU7Yckh9a2bLZNhtMTb-_IVcBN52fnPeYfD3NPquXfPH-PK8eFrmFEmiueKkEq0UIgTkRIIDnHEACRe8EcGmdkDWjjjmtShuctABWclQu1MpaNibzE9dFXJtdaraY9iZiY46PmFYGU9_YjTceeVFT0I4xz1EIzYPSlNkAtGY84MCCE8um2HXJhz8eLcxRqzloNQet5qyV_QK52mph</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CK-Encoder: Enhanced Language Representation for Sentence Similarity</title><source>Emerald Open Access</source><source>IEEE Xplore</source><creator>Jiang, Tao ; Kang, Fengjian ; Guo, Wei ; He, Wei ; Liu, Lei ; Lu, Xudong ; Xu, Yonghui ; Cui, Lizhen</creator><creatorcontrib>Jiang, Tao ; Kang, Fengjian ; Guo, Wei ; He, Wei ; Liu, Lei ; Lu, Xudong ; Xu, Yonghui ; Cui, Lizhen</creatorcontrib><description>In recent years, neural networks have been widely used in natural language processing, especially in sentence similarity modeling. Most of the previous studies focused on the current sentence, ignoring the commonsense knowledge related to the current sentence in the task of sentence similarity modeling. Commonsense knowledge can be remarkably useful for understanding the semantics of sentences. CK-Encoder, which can effectively acquire commonsense knowledge to improve the performance of sentence similarity modeling, is proposed in this paper. Specifically, the model first generates a commonsense knowledge graph of the input sentence and calculates this graph by using the graph convolution network. In addition, CKER, a framework combining CK-Encoder and sentence encoder, is introduced. Experiments on two sentence similarity tasks have demonstrated that CK-Encoder can effectively acquire commonsense knowledge to improve the capability of a model to understand sentences.</description><identifier>ISSN: 2398-7294</identifier><identifier>EISSN: 2398-7294</identifier><identifier>DOI: 10.26599/IJCS.2022.9100001</identifier><language>eng</language><publisher>Tsinghua University Press</publisher><subject>ck-encoder ; commonsense knowledge ; sentence similarity</subject><ispartof>International journal of crowd science, 2022-04, Vol.6 (1), p.17-22</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2721-847853b5fff3d5f2f2e4422621aed5246cd56b31d3d987cfd6c22c64a8dfb8cc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Kang, Fengjian</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Lu, Xudong</creatorcontrib><creatorcontrib>Xu, Yonghui</creatorcontrib><creatorcontrib>Cui, Lizhen</creatorcontrib><title>CK-Encoder: Enhanced Language Representation for Sentence Similarity</title><title>International journal of crowd science</title><description>In recent years, neural networks have been widely used in natural language processing, especially in sentence similarity modeling. Most of the previous studies focused on the current sentence, ignoring the commonsense knowledge related to the current sentence in the task of sentence similarity modeling. Commonsense knowledge can be remarkably useful for understanding the semantics of sentences. CK-Encoder, which can effectively acquire commonsense knowledge to improve the performance of sentence similarity modeling, is proposed in this paper. Specifically, the model first generates a commonsense knowledge graph of the input sentence and calculates this graph by using the graph convolution network. In addition, CKER, a framework combining CK-Encoder and sentence encoder, is introduced. Experiments on two sentence similarity tasks have demonstrated that CK-Encoder can effectively acquire commonsense knowledge to improve the capability of a model to understand sentences.</description><subject>ck-encoder</subject><subject>commonsense knowledge</subject><subject>sentence similarity</subject><issn>2398-7294</issn><issn>2398-7294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkMtOwzAQRS0EElXpD7DKD6TE40dsdigUKFRCorC2Jn6UVG1cOWHRvyd9CDGbmTu6OotDyC0tpiCF1nfz12o5hQJgqmkxDL0gI2Ba5SVofvnvviaTrlsPDSil5qUekcfqLZ-1Njqf7rNZ-42t9S5bYLv6wZXPPvwu-c63PfZNbLMQU7Yckh9a2bLZNhtMTb-_IVcBN52fnPeYfD3NPquXfPH-PK8eFrmFEmiueKkEq0UIgTkRIIDnHEACRe8EcGmdkDWjjjmtShuctABWclQu1MpaNibzE9dFXJtdaraY9iZiY46PmFYGU9_YjTceeVFT0I4xz1EIzYPSlNkAtGY84MCCE8um2HXJhz8eLcxRqzloNQet5qyV_QK52mph</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Jiang, Tao</creator><creator>Kang, Fengjian</creator><creator>Guo, Wei</creator><creator>He, Wei</creator><creator>Liu, Lei</creator><creator>Lu, Xudong</creator><creator>Xu, Yonghui</creator><creator>Cui, Lizhen</creator><general>Tsinghua University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20220401</creationdate><title>CK-Encoder: Enhanced Language Representation for Sentence Similarity</title><author>Jiang, Tao ; Kang, Fengjian ; Guo, Wei ; He, Wei ; Liu, Lei ; Lu, Xudong ; Xu, Yonghui ; Cui, Lizhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2721-847853b5fff3d5f2f2e4422621aed5246cd56b31d3d987cfd6c22c64a8dfb8cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ck-encoder</topic><topic>commonsense knowledge</topic><topic>sentence similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Kang, Fengjian</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Lu, Xudong</creatorcontrib><creatorcontrib>Xu, Yonghui</creatorcontrib><creatorcontrib>Cui, Lizhen</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of crowd science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Tao</au><au>Kang, Fengjian</au><au>Guo, Wei</au><au>He, Wei</au><au>Liu, Lei</au><au>Lu, Xudong</au><au>Xu, Yonghui</au><au>Cui, Lizhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CK-Encoder: Enhanced Language Representation for Sentence Similarity</atitle><jtitle>International journal of crowd science</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>6</volume><issue>1</issue><spage>17</spage><epage>22</epage><pages>17-22</pages><issn>2398-7294</issn><eissn>2398-7294</eissn><abstract>In recent years, neural networks have been widely used in natural language processing, especially in sentence similarity modeling. Most of the previous studies focused on the current sentence, ignoring the commonsense knowledge related to the current sentence in the task of sentence similarity modeling. Commonsense knowledge can be remarkably useful for understanding the semantics of sentences. CK-Encoder, which can effectively acquire commonsense knowledge to improve the performance of sentence similarity modeling, is proposed in this paper. Specifically, the model first generates a commonsense knowledge graph of the input sentence and calculates this graph by using the graph convolution network. In addition, CKER, a framework combining CK-Encoder and sentence encoder, is introduced. Experiments on two sentence similarity tasks have demonstrated that CK-Encoder can effectively acquire commonsense knowledge to improve the capability of a model to understand sentences.</abstract><pub>Tsinghua University Press</pub><doi>10.26599/IJCS.2022.9100001</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2398-7294
ispartof International journal of crowd science, 2022-04, Vol.6 (1), p.17-22
issn 2398-7294
2398-7294
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ea40b129d33e4a5594f8913cf21b34fa
source Emerald Open Access; IEEE Xplore
subjects ck-encoder
commonsense knowledge
sentence similarity
title CK-Encoder: Enhanced Language Representation for Sentence Similarity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CK-Encoder:%20Enhanced%20Language%20Representation%20for%20Sentence%20Similarity&rft.jtitle=International%20journal%20of%20crowd%20science&rft.au=Jiang,%20Tao&rft.date=2022-04-01&rft.volume=6&rft.issue=1&rft.spage=17&rft.epage=22&rft.pages=17-22&rft.issn=2398-7294&rft.eissn=2398-7294&rft_id=info:doi/10.26599/IJCS.2022.9100001&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_ea40b129d33e4a5594f8913cf21b34fa%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2721-847853b5fff3d5f2f2e4422621aed5246cd56b31d3d987cfd6c22c64a8dfb8cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true