Loading…
Modelling invasive group A streptococcal disease using bioluminescence
The development of vaccines and evaluation of novel treatment strategies for invasive group A streptococcal (iGAS) disease requires suitable models of human infection that can be monitored longitudinally and are preferably non-invasive. Bio-photonic imaging provides an opportunity to reduce use of a...
Saved in:
Published in: | BMC microbiology 2018-06, Vol.18 (1), p.60-60, Article 60 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c594t-c4d1a007307e1641e7a6be823508ec64ab1b5b08900226d07be1120d4834bfa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c594t-c4d1a007307e1641e7a6be823508ec64ab1b5b08900226d07be1120d4834bfa3 |
container_end_page | 60 |
container_issue | 1 |
container_start_page | 60 |
container_title | BMC microbiology |
container_volume | 18 |
creator | Lamb, L E Zhi, X Alam, F Pyzio, M Scudamore, C L Wiles, S Sriskandan, S |
description | The development of vaccines and evaluation of novel treatment strategies for invasive group A streptococcal (iGAS) disease requires suitable models of human infection that can be monitored longitudinally and are preferably non-invasive. Bio-photonic imaging provides an opportunity to reduce use of animals in infection modelling and refine the information that can be obtained, however the range of bioluminescent GAS strains available is limited. In this study we set out to develop bioluminescent iGAS strains for use in in vivo pneumonia and soft tissue disease models.
Using clinical emm1, emm3, and emm89 GAS strains that were transformed with constructs carrying the luxABCDE operon, growth and bioluminescence of transformed strains were characterised in vitro and in vivo. Emm3 and emm89 strains expressed detectable bioluminescence when transformed with a replicating plasmid and light production correlated with viable bacterial counts in vitro, however plasmid instability precluded use in the absence of antimicrobial pressure. Emm89 GAS transformed with an integrating construct demonstrated stable bioluminescence that was maintained in the absence of antibiotics. Bioluminescence of the emm89 strain correlated with viable bacterial counts both in vitro and immediately following infection in vivo. Although bioluminescence conferred a detectable fitness burden to the emm89 strain during soft tissue infection in vivo, it did not prevent dissemination to distant tissues.
Development of stably bioluminescent GAS for use in vitro and in vivo models of infection should facilitate development of novel therapeutics and vaccines while also increasing our understanding of infection progression and transmission routes. |
doi_str_mv | 10.1186/s12866-018-1200-1 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ea43b8960075495cb699cb7e456eddd3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A546886159</galeid><doaj_id>oai_doaj_org_article_ea43b8960075495cb699cb7e456eddd3</doaj_id><sourcerecordid>A546886159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-c4d1a007307e1641e7a6be823508ec64ab1b5b08900226d07be1120d4834bfa3</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEoh_wA7igSFzoIcXjOI5zQVpVFFYqQoLeLX9MgldJvNjJqvx7HLaUBiEfbI2feUfz6s2yV0AuAQR_F4EKzgsCogBKSAFPslNgNRQUBHn66H2SncW4IwRqUdbPsxPaNBQoI6fZ9Wdvse_d2OVuPKjoDph3wc_7fJPHKeB-8sYbo_rcuogqYj7HBdbO9_PgRowGR4Mvsmet6iO-vL_Ps9vrD7dXn4qbLx-3V5ubwlQNmwrDLChC6pLUCJwB1oprFLSsiEDDmdKgK01EQwil3JJaI6TNLBMl060qz7PtUdZ6tZP74AYVfkqvnPxd8KGTKkzO9ChRsVKLhqdpFWsqo3nTGF0jqzhaa8uk9f6otZ_1gDatMQXVr0TXP6P7Ljt_kEmSNyUkgbf3AsH_mDFOcnDJjb5XI_o5SkqqmjEqSJXQN_-gOz-HMTm1ULwumRD8L9WptIAbW5_mmkVUbirGEwJVk6jL_1DpWByc8SO2LtVXDRerhsRMeDd1ao5Rbr99XbNwZE3wMQZsH_wAIpfMyWPmZMqcXDInFx9ePzbyoeNPyMpfnDPPFQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056734886</pqid></control><display><type>article</type><title>Modelling invasive group A streptococcal disease using bioluminescence</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Lamb, L E ; Zhi, X ; Alam, F ; Pyzio, M ; Scudamore, C L ; Wiles, S ; Sriskandan, S</creator><creatorcontrib>Lamb, L E ; Zhi, X ; Alam, F ; Pyzio, M ; Scudamore, C L ; Wiles, S ; Sriskandan, S</creatorcontrib><description>The development of vaccines and evaluation of novel treatment strategies for invasive group A streptococcal (iGAS) disease requires suitable models of human infection that can be monitored longitudinally and are preferably non-invasive. Bio-photonic imaging provides an opportunity to reduce use of animals in infection modelling and refine the information that can be obtained, however the range of bioluminescent GAS strains available is limited. In this study we set out to develop bioluminescent iGAS strains for use in in vivo pneumonia and soft tissue disease models.
Using clinical emm1, emm3, and emm89 GAS strains that were transformed with constructs carrying the luxABCDE operon, growth and bioluminescence of transformed strains were characterised in vitro and in vivo. Emm3 and emm89 strains expressed detectable bioluminescence when transformed with a replicating plasmid and light production correlated with viable bacterial counts in vitro, however plasmid instability precluded use in the absence of antimicrobial pressure. Emm89 GAS transformed with an integrating construct demonstrated stable bioluminescence that was maintained in the absence of antibiotics. Bioluminescence of the emm89 strain correlated with viable bacterial counts both in vitro and immediately following infection in vivo. Although bioluminescence conferred a detectable fitness burden to the emm89 strain during soft tissue infection in vivo, it did not prevent dissemination to distant tissues.
Development of stably bioluminescent GAS for use in vitro and in vivo models of infection should facilitate development of novel therapeutics and vaccines while also increasing our understanding of infection progression and transmission routes.</description><identifier>ISSN: 1471-2180</identifier><identifier>EISSN: 1471-2180</identifier><identifier>DOI: 10.1186/s12866-018-1200-1</identifier><identifier>PMID: 29921240</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Animals ; Antibiotics ; Antigens, Bacterial - genetics ; Bacteria ; Bacterial Outer Membrane Proteins - genetics ; Bioluminescence ; Biophotonic imaging ; Carrier Proteins - genetics ; Disease ; Disease Models, Animal ; Disease transmission ; Drug development ; Drug therapy ; Experiments ; Female ; Fitness ; Galleria mellonella ; Genetic Fitness ; Group A Streptococcus ; Health sciences ; Humans ; Infection model ; Infections ; Inflammatory diseases ; Invasive disease ; Light ; Luciferase ; Luminescent Measurements ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Medical research ; Methodology ; Mice ; Modelling ; Operon ; Pathogenesis ; Photonics ; Replication ; Respiratory Tract Infections - microbiology ; Stability ; Strains (organisms) ; Streptococcal infections ; Streptococcal Infections - microbiology ; Streptococcus ; Streptococcus infections ; Streptococcus pyogenes ; Streptococcus pyogenes - genetics ; Streptococcus pyogenes - pathogenicity ; Vaccines</subject><ispartof>BMC microbiology, 2018-06, Vol.18 (1), p.60-60, Article 60</ispartof><rights>COPYRIGHT 2018 BioMed Central Ltd.</rights><rights>Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s). 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-c4d1a007307e1641e7a6be823508ec64ab1b5b08900226d07be1120d4834bfa3</citedby><cites>FETCH-LOGICAL-c594t-c4d1a007307e1641e7a6be823508ec64ab1b5b08900226d07be1120d4834bfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6006931/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2056734886?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29921240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lamb, L E</creatorcontrib><creatorcontrib>Zhi, X</creatorcontrib><creatorcontrib>Alam, F</creatorcontrib><creatorcontrib>Pyzio, M</creatorcontrib><creatorcontrib>Scudamore, C L</creatorcontrib><creatorcontrib>Wiles, S</creatorcontrib><creatorcontrib>Sriskandan, S</creatorcontrib><title>Modelling invasive group A streptococcal disease using bioluminescence</title><title>BMC microbiology</title><addtitle>BMC Microbiol</addtitle><description>The development of vaccines and evaluation of novel treatment strategies for invasive group A streptococcal (iGAS) disease requires suitable models of human infection that can be monitored longitudinally and are preferably non-invasive. Bio-photonic imaging provides an opportunity to reduce use of animals in infection modelling and refine the information that can be obtained, however the range of bioluminescent GAS strains available is limited. In this study we set out to develop bioluminescent iGAS strains for use in in vivo pneumonia and soft tissue disease models.
Using clinical emm1, emm3, and emm89 GAS strains that were transformed with constructs carrying the luxABCDE operon, growth and bioluminescence of transformed strains were characterised in vitro and in vivo. Emm3 and emm89 strains expressed detectable bioluminescence when transformed with a replicating plasmid and light production correlated with viable bacterial counts in vitro, however plasmid instability precluded use in the absence of antimicrobial pressure. Emm89 GAS transformed with an integrating construct demonstrated stable bioluminescence that was maintained in the absence of antibiotics. Bioluminescence of the emm89 strain correlated with viable bacterial counts both in vitro and immediately following infection in vivo. Although bioluminescence conferred a detectable fitness burden to the emm89 strain during soft tissue infection in vivo, it did not prevent dissemination to distant tissues.
Development of stably bioluminescent GAS for use in vitro and in vivo models of infection should facilitate development of novel therapeutics and vaccines while also increasing our understanding of infection progression and transmission routes.</description><subject>Analysis</subject><subject>Animals</subject><subject>Antibiotics</subject><subject>Antigens, Bacterial - genetics</subject><subject>Bacteria</subject><subject>Bacterial Outer Membrane Proteins - genetics</subject><subject>Bioluminescence</subject><subject>Biophotonic imaging</subject><subject>Carrier Proteins - genetics</subject><subject>Disease</subject><subject>Disease Models, Animal</subject><subject>Disease transmission</subject><subject>Drug development</subject><subject>Drug therapy</subject><subject>Experiments</subject><subject>Female</subject><subject>Fitness</subject><subject>Galleria mellonella</subject><subject>Genetic Fitness</subject><subject>Group A Streptococcus</subject><subject>Health sciences</subject><subject>Humans</subject><subject>Infection model</subject><subject>Infections</subject><subject>Inflammatory diseases</subject><subject>Invasive disease</subject><subject>Light</subject><subject>Luciferase</subject><subject>Luminescent Measurements</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Medical research</subject><subject>Methodology</subject><subject>Mice</subject><subject>Modelling</subject><subject>Operon</subject><subject>Pathogenesis</subject><subject>Photonics</subject><subject>Replication</subject><subject>Respiratory Tract Infections - microbiology</subject><subject>Stability</subject><subject>Strains (organisms)</subject><subject>Streptococcal infections</subject><subject>Streptococcal Infections - microbiology</subject><subject>Streptococcus</subject><subject>Streptococcus infections</subject><subject>Streptococcus pyogenes</subject><subject>Streptococcus pyogenes - genetics</subject><subject>Streptococcus pyogenes - pathogenicity</subject><subject>Vaccines</subject><issn>1471-2180</issn><issn>1471-2180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiMEoh_wA7igSFzoIcXjOI5zQVpVFFYqQoLeLX9MgldJvNjJqvx7HLaUBiEfbI2feUfz6s2yV0AuAQR_F4EKzgsCogBKSAFPslNgNRQUBHn66H2SncW4IwRqUdbPsxPaNBQoI6fZ9Wdvse_d2OVuPKjoDph3wc_7fJPHKeB-8sYbo_rcuogqYj7HBdbO9_PgRowGR4Mvsmet6iO-vL_Ps9vrD7dXn4qbLx-3V5ubwlQNmwrDLChC6pLUCJwB1oprFLSsiEDDmdKgK01EQwil3JJaI6TNLBMl060qz7PtUdZ6tZP74AYVfkqvnPxd8KGTKkzO9ChRsVKLhqdpFWsqo3nTGF0jqzhaa8uk9f6otZ_1gDatMQXVr0TXP6P7Ljt_kEmSNyUkgbf3AsH_mDFOcnDJjb5XI_o5SkqqmjEqSJXQN_-gOz-HMTm1ULwumRD8L9WptIAbW5_mmkVUbirGEwJVk6jL_1DpWByc8SO2LtVXDRerhsRMeDd1ao5Rbr99XbNwZE3wMQZsH_wAIpfMyWPmZMqcXDInFx9ePzbyoeNPyMpfnDPPFQ</recordid><startdate>20180619</startdate><enddate>20180619</enddate><creator>Lamb, L E</creator><creator>Zhi, X</creator><creator>Alam, F</creator><creator>Pyzio, M</creator><creator>Scudamore, C L</creator><creator>Wiles, S</creator><creator>Sriskandan, S</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180619</creationdate><title>Modelling invasive group A streptococcal disease using bioluminescence</title><author>Lamb, L E ; Zhi, X ; Alam, F ; Pyzio, M ; Scudamore, C L ; Wiles, S ; Sriskandan, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-c4d1a007307e1641e7a6be823508ec64ab1b5b08900226d07be1120d4834bfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Antibiotics</topic><topic>Antigens, Bacterial - genetics</topic><topic>Bacteria</topic><topic>Bacterial Outer Membrane Proteins - genetics</topic><topic>Bioluminescence</topic><topic>Biophotonic imaging</topic><topic>Carrier Proteins - genetics</topic><topic>Disease</topic><topic>Disease Models, Animal</topic><topic>Disease transmission</topic><topic>Drug development</topic><topic>Drug therapy</topic><topic>Experiments</topic><topic>Female</topic><topic>Fitness</topic><topic>Galleria mellonella</topic><topic>Genetic Fitness</topic><topic>Group A Streptococcus</topic><topic>Health sciences</topic><topic>Humans</topic><topic>Infection model</topic><topic>Infections</topic><topic>Inflammatory diseases</topic><topic>Invasive disease</topic><topic>Light</topic><topic>Luciferase</topic><topic>Luminescent Measurements</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Medical research</topic><topic>Methodology</topic><topic>Mice</topic><topic>Modelling</topic><topic>Operon</topic><topic>Pathogenesis</topic><topic>Photonics</topic><topic>Replication</topic><topic>Respiratory Tract Infections - microbiology</topic><topic>Stability</topic><topic>Strains (organisms)</topic><topic>Streptococcal infections</topic><topic>Streptococcal Infections - microbiology</topic><topic>Streptococcus</topic><topic>Streptococcus infections</topic><topic>Streptococcus pyogenes</topic><topic>Streptococcus pyogenes - genetics</topic><topic>Streptococcus pyogenes - pathogenicity</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamb, L E</creatorcontrib><creatorcontrib>Zhi, X</creatorcontrib><creatorcontrib>Alam, F</creatorcontrib><creatorcontrib>Pyzio, M</creatorcontrib><creatorcontrib>Scudamore, C L</creatorcontrib><creatorcontrib>Wiles, S</creatorcontrib><creatorcontrib>Sriskandan, S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamb, L E</au><au>Zhi, X</au><au>Alam, F</au><au>Pyzio, M</au><au>Scudamore, C L</au><au>Wiles, S</au><au>Sriskandan, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling invasive group A streptococcal disease using bioluminescence</atitle><jtitle>BMC microbiology</jtitle><addtitle>BMC Microbiol</addtitle><date>2018-06-19</date><risdate>2018</risdate><volume>18</volume><issue>1</issue><spage>60</spage><epage>60</epage><pages>60-60</pages><artnum>60</artnum><issn>1471-2180</issn><eissn>1471-2180</eissn><abstract>The development of vaccines and evaluation of novel treatment strategies for invasive group A streptococcal (iGAS) disease requires suitable models of human infection that can be monitored longitudinally and are preferably non-invasive. Bio-photonic imaging provides an opportunity to reduce use of animals in infection modelling and refine the information that can be obtained, however the range of bioluminescent GAS strains available is limited. In this study we set out to develop bioluminescent iGAS strains for use in in vivo pneumonia and soft tissue disease models.
Using clinical emm1, emm3, and emm89 GAS strains that were transformed with constructs carrying the luxABCDE operon, growth and bioluminescence of transformed strains were characterised in vitro and in vivo. Emm3 and emm89 strains expressed detectable bioluminescence when transformed with a replicating plasmid and light production correlated with viable bacterial counts in vitro, however plasmid instability precluded use in the absence of antimicrobial pressure. Emm89 GAS transformed with an integrating construct demonstrated stable bioluminescence that was maintained in the absence of antibiotics. Bioluminescence of the emm89 strain correlated with viable bacterial counts both in vitro and immediately following infection in vivo. Although bioluminescence conferred a detectable fitness burden to the emm89 strain during soft tissue infection in vivo, it did not prevent dissemination to distant tissues.
Development of stably bioluminescent GAS for use in vitro and in vivo models of infection should facilitate development of novel therapeutics and vaccines while also increasing our understanding of infection progression and transmission routes.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>29921240</pmid><doi>10.1186/s12866-018-1200-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2180 |
ispartof | BMC microbiology, 2018-06, Vol.18 (1), p.60-60, Article 60 |
issn | 1471-2180 1471-2180 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ea43b8960075495cb699cb7e456eddd3 |
source | Publicly Available Content Database; PubMed Central |
subjects | Analysis Animals Antibiotics Antigens, Bacterial - genetics Bacteria Bacterial Outer Membrane Proteins - genetics Bioluminescence Biophotonic imaging Carrier Proteins - genetics Disease Disease Models, Animal Disease transmission Drug development Drug therapy Experiments Female Fitness Galleria mellonella Genetic Fitness Group A Streptococcus Health sciences Humans Infection model Infections Inflammatory diseases Invasive disease Light Luciferase Luminescent Measurements Luminescent Proteins - genetics Luminescent Proteins - metabolism Medical research Methodology Mice Modelling Operon Pathogenesis Photonics Replication Respiratory Tract Infections - microbiology Stability Strains (organisms) Streptococcal infections Streptococcal Infections - microbiology Streptococcus Streptococcus infections Streptococcus pyogenes Streptococcus pyogenes - genetics Streptococcus pyogenes - pathogenicity Vaccines |
title | Modelling invasive group A streptococcal disease using bioluminescence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20invasive%20group%20A%20streptococcal%20disease%20using%20bioluminescence&rft.jtitle=BMC%20microbiology&rft.au=Lamb,%20L%20E&rft.date=2018-06-19&rft.volume=18&rft.issue=1&rft.spage=60&rft.epage=60&rft.pages=60-60&rft.artnum=60&rft.issn=1471-2180&rft.eissn=1471-2180&rft_id=info:doi/10.1186/s12866-018-1200-1&rft_dat=%3Cgale_doaj_%3EA546886159%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-c4d1a007307e1641e7a6be823508ec64ab1b5b08900226d07be1120d4834bfa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2056734886&rft_id=info:pmid/29921240&rft_galeid=A546886159&rfr_iscdi=true |