Loading…

Moroccan clays for potential use as aluminosilicate precursors for geopolymer synthesis

Three Moroccan clays, denoted A1, A3 and A5, were sampled from the Fez region with the aim of potential use as aluminosilicate precursors for geopolymer synthesis. Each clay was subjected to calcination at 700 °C and analyzed using DTA/TG, grain size distribution measurements, XRD, and FTIR spectros...

Full description

Saved in:
Bibliographic Details
Published in:E3S web of conferences 2021-01, Vol.240, p.3001
Main Authors: El Khomsi, Anass, Ghaezouni, Ameni, Idrissi kandri, Noureddine, Zerouale, Abdelaziz, Rossignol, Sylvie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Three Moroccan clays, denoted A1, A3 and A5, were sampled from the Fez region with the aim of potential use as aluminosilicate precursors for geopolymer synthesis. Each clay was subjected to calcination at 700 °C and analyzed using DTA/TG, grain size distribution measurements, XRD, and FTIR spectroscopy before and after heat treatment. The results showed that the three clays contain kaolinite in different proportions in addition to some associated minerals, such as quartz, hematite, calcite and dolomite. Heat treatment successfully activated the clay by the amorphization of kaolinite, which is essential for geopolymerization. Some other changes were observed in the associated minerals, especially carbonates, which partially or totally decomposed depending on the clay, while other minerals remained intact. The SBET and NBO values are in accordance with the degree of polymerization, and the obtention of consolidated materials is possible by alkali activation of the calcined clays.
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/202124003001