Loading…
A deep learning method for optimizing semantic segmentation accuracy of remote sensing images based on improved UNet
Semantic segmentation of remote sensing imagery (RSI) is critical in many domains due to the diverse landscapes and different sizes of geo-objects that RSI contains, making semantic segmentation challenging. In this paper, a convolutional network, named Adaptive Feature Fusion UNet (AFF-UNet), is pr...
Saved in:
Published in: | Scientific reports 2023-05, Vol.13 (1), p.7600-7600, Article 7600 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c541t-dcaf3981be48620968c2209207a8231904e8181fa1ca145a74ec0f4a88c77ec03 |
---|---|
cites | cdi_FETCH-LOGICAL-c541t-dcaf3981be48620968c2209207a8231904e8181fa1ca145a74ec0f4a88c77ec03 |
container_end_page | 7600 |
container_issue | 1 |
container_start_page | 7600 |
container_title | Scientific reports |
container_volume | 13 |
creator | Wang, Xiaolei Hu, Zirong Shi, Shouhai Hou, Mei Xu, Lei Zhang, Xiang |
description | Semantic segmentation of remote sensing imagery (RSI) is critical in many domains due to the diverse landscapes and different sizes of geo-objects that RSI contains, making semantic segmentation challenging. In this paper, a convolutional network, named Adaptive Feature Fusion UNet (AFF-UNet), is proposed to optimize the semantic segmentation performance. The model has three key aspects: (1) dense skip connections architecture and an adaptive feature fusion module that adaptively weighs different levels of feature maps to achieve adaptive feature fusion, (2) a channel attention convolution block that obtains the relationship between different channels using a tailored configuration, and (3) a spatial attention module that obtains the relationship between different positions. AFF-UNet was evaluated on two public RSI datasets and was quantitatively and qualitatively compared with other models. Results from the Potsdam dataset showed that the proposed model achieved an increase of 1.09% over DeepLabv3 + in terms of the average F1 score and a 0.99% improvement in overall accuracy. The visual qualitative results also demonstrated a reduction in confusion of object classes, better performance in segmenting different sizes of object classes, and better object integrity. Therefore, the proposed AFF-UNet model optimizes the accuracy of RSI semantic segmentation. |
doi_str_mv | 10.1038/s41598-023-34379-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ea820bcce80442b2925d81dcccdecc25</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ea820bcce80442b2925d81dcccdecc25</doaj_id><sourcerecordid>2811791627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-dcaf3981be48620968c2209207a8231904e8181fa1ca145a74ec0f4a88c77ec03</originalsourceid><addsrcrecordid>eNp9Uk9v1zAMrRCITWNfgAOqxIVLIXGSNjmhaeLPpAku7BylqdvlpzYpSTtpfHrSdYyNA7n4yX5-sa1XFK8peU8Jkx8Sp0LJigCrGGeNquBZcQyEiwoYwPNH-Kg4TelA8hOgOFUviyPW0FoQDsfFclZ2iHM5oone-aGccLkOXdmHWIZ5cZP7tWUTTsYvzmYwTOgXs7jgS2PtGo29LUNfRpzCgrnu09bgJjNgKluTsCsz1U1zDDcZX33D5VXxojdjwtP7eFJcff704_xrdfn9y8X52WVlBadL1VnTMyVpi1zWQFQtLeQApDESGFWEo6SS9oZaQ7kwDUdLem6ktE2TITspLnbdLpiDnmMeKt7qYJy-S4Q4aBPzViNqzJKktRYl4RxaUCA6STtrbYfWgshaH3eteW0n7Gw-QjTjE9GnFe-u9RBuNCW0AVZDVnh3rxDDzxXToieXLI6j8RjWpEFSEESIWmXq23-oh7BGn2-1sWijaA1NZsHOsjGkFLF_mIYSvZlE7ybR2ST6ziR6m-LN4z0eWv5YIhPYTki55AeMf__-j-xvLpnI1A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811791627</pqid></control><display><type>article</type><title>A deep learning method for optimizing semantic segmentation accuracy of remote sensing images based on improved UNet</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wang, Xiaolei ; Hu, Zirong ; Shi, Shouhai ; Hou, Mei ; Xu, Lei ; Zhang, Xiang</creator><creatorcontrib>Wang, Xiaolei ; Hu, Zirong ; Shi, Shouhai ; Hou, Mei ; Xu, Lei ; Zhang, Xiang</creatorcontrib><description>Semantic segmentation of remote sensing imagery (RSI) is critical in many domains due to the diverse landscapes and different sizes of geo-objects that RSI contains, making semantic segmentation challenging. In this paper, a convolutional network, named Adaptive Feature Fusion UNet (AFF-UNet), is proposed to optimize the semantic segmentation performance. The model has three key aspects: (1) dense skip connections architecture and an adaptive feature fusion module that adaptively weighs different levels of feature maps to achieve adaptive feature fusion, (2) a channel attention convolution block that obtains the relationship between different channels using a tailored configuration, and (3) a spatial attention module that obtains the relationship between different positions. AFF-UNet was evaluated on two public RSI datasets and was quantitatively and qualitatively compared with other models. Results from the Potsdam dataset showed that the proposed model achieved an increase of 1.09% over DeepLabv3 + in terms of the average F1 score and a 0.99% improvement in overall accuracy. The visual qualitative results also demonstrated a reduction in confusion of object classes, better performance in segmenting different sizes of object classes, and better object integrity. Therefore, the proposed AFF-UNet model optimizes the accuracy of RSI semantic segmentation.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-023-34379-2</identifier><identifier>PMID: 37165042</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/172 ; 704/844 ; Accuracy ; Deep learning ; Humanities and Social Sciences ; Image processing ; multidisciplinary ; Remote sensing ; Science ; Science (multidisciplinary) ; Semantics</subject><ispartof>Scientific reports, 2023-05, Vol.13 (1), p.7600-7600, Article 7600</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-dcaf3981be48620968c2209207a8231904e8181fa1ca145a74ec0f4a88c77ec03</citedby><cites>FETCH-LOGICAL-c541t-dcaf3981be48620968c2209207a8231904e8181fa1ca145a74ec0f4a88c77ec03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2811791627/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2811791627?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37165042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xiaolei</creatorcontrib><creatorcontrib>Hu, Zirong</creatorcontrib><creatorcontrib>Shi, Shouhai</creatorcontrib><creatorcontrib>Hou, Mei</creatorcontrib><creatorcontrib>Xu, Lei</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><title>A deep learning method for optimizing semantic segmentation accuracy of remote sensing images based on improved UNet</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Semantic segmentation of remote sensing imagery (RSI) is critical in many domains due to the diverse landscapes and different sizes of geo-objects that RSI contains, making semantic segmentation challenging. In this paper, a convolutional network, named Adaptive Feature Fusion UNet (AFF-UNet), is proposed to optimize the semantic segmentation performance. The model has three key aspects: (1) dense skip connections architecture and an adaptive feature fusion module that adaptively weighs different levels of feature maps to achieve adaptive feature fusion, (2) a channel attention convolution block that obtains the relationship between different channels using a tailored configuration, and (3) a spatial attention module that obtains the relationship between different positions. AFF-UNet was evaluated on two public RSI datasets and was quantitatively and qualitatively compared with other models. Results from the Potsdam dataset showed that the proposed model achieved an increase of 1.09% over DeepLabv3 + in terms of the average F1 score and a 0.99% improvement in overall accuracy. The visual qualitative results also demonstrated a reduction in confusion of object classes, better performance in segmenting different sizes of object classes, and better object integrity. Therefore, the proposed AFF-UNet model optimizes the accuracy of RSI semantic segmentation.</description><subject>704/172</subject><subject>704/844</subject><subject>Accuracy</subject><subject>Deep learning</subject><subject>Humanities and Social Sciences</subject><subject>Image processing</subject><subject>multidisciplinary</subject><subject>Remote sensing</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semantics</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uk9v1zAMrRCITWNfgAOqxIVLIXGSNjmhaeLPpAku7BylqdvlpzYpSTtpfHrSdYyNA7n4yX5-sa1XFK8peU8Jkx8Sp0LJigCrGGeNquBZcQyEiwoYwPNH-Kg4TelA8hOgOFUviyPW0FoQDsfFclZ2iHM5oone-aGccLkOXdmHWIZ5cZP7tWUTTsYvzmYwTOgXs7jgS2PtGo29LUNfRpzCgrnu09bgJjNgKluTsCsz1U1zDDcZX33D5VXxojdjwtP7eFJcff704_xrdfn9y8X52WVlBadL1VnTMyVpi1zWQFQtLeQApDESGFWEo6SS9oZaQ7kwDUdLem6ktE2TITspLnbdLpiDnmMeKt7qYJy-S4Q4aBPzViNqzJKktRYl4RxaUCA6STtrbYfWgshaH3eteW0n7Gw-QjTjE9GnFe-u9RBuNCW0AVZDVnh3rxDDzxXToieXLI6j8RjWpEFSEESIWmXq23-oh7BGn2-1sWijaA1NZsHOsjGkFLF_mIYSvZlE7ybR2ST6ziR6m-LN4z0eWv5YIhPYTki55AeMf__-j-xvLpnI1A</recordid><startdate>20230510</startdate><enddate>20230510</enddate><creator>Wang, Xiaolei</creator><creator>Hu, Zirong</creator><creator>Shi, Shouhai</creator><creator>Hou, Mei</creator><creator>Xu, Lei</creator><creator>Zhang, Xiang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230510</creationdate><title>A deep learning method for optimizing semantic segmentation accuracy of remote sensing images based on improved UNet</title><author>Wang, Xiaolei ; Hu, Zirong ; Shi, Shouhai ; Hou, Mei ; Xu, Lei ; Zhang, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-dcaf3981be48620968c2209207a8231904e8181fa1ca145a74ec0f4a88c77ec03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>704/172</topic><topic>704/844</topic><topic>Accuracy</topic><topic>Deep learning</topic><topic>Humanities and Social Sciences</topic><topic>Image processing</topic><topic>multidisciplinary</topic><topic>Remote sensing</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaolei</creatorcontrib><creatorcontrib>Hu, Zirong</creatorcontrib><creatorcontrib>Shi, Shouhai</creatorcontrib><creatorcontrib>Hou, Mei</creatorcontrib><creatorcontrib>Xu, Lei</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Health & Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaolei</au><au>Hu, Zirong</au><au>Shi, Shouhai</au><au>Hou, Mei</au><au>Xu, Lei</au><au>Zhang, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deep learning method for optimizing semantic segmentation accuracy of remote sensing images based on improved UNet</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2023-05-10</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>7600</spage><epage>7600</epage><pages>7600-7600</pages><artnum>7600</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Semantic segmentation of remote sensing imagery (RSI) is critical in many domains due to the diverse landscapes and different sizes of geo-objects that RSI contains, making semantic segmentation challenging. In this paper, a convolutional network, named Adaptive Feature Fusion UNet (AFF-UNet), is proposed to optimize the semantic segmentation performance. The model has three key aspects: (1) dense skip connections architecture and an adaptive feature fusion module that adaptively weighs different levels of feature maps to achieve adaptive feature fusion, (2) a channel attention convolution block that obtains the relationship between different channels using a tailored configuration, and (3) a spatial attention module that obtains the relationship between different positions. AFF-UNet was evaluated on two public RSI datasets and was quantitatively and qualitatively compared with other models. Results from the Potsdam dataset showed that the proposed model achieved an increase of 1.09% over DeepLabv3 + in terms of the average F1 score and a 0.99% improvement in overall accuracy. The visual qualitative results also demonstrated a reduction in confusion of object classes, better performance in segmenting different sizes of object classes, and better object integrity. Therefore, the proposed AFF-UNet model optimizes the accuracy of RSI semantic segmentation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37165042</pmid><doi>10.1038/s41598-023-34379-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2023-05, Vol.13 (1), p.7600-7600, Article 7600 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ea820bcce80442b2925d81dcccdecc25 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 704/172 704/844 Accuracy Deep learning Humanities and Social Sciences Image processing multidisciplinary Remote sensing Science Science (multidisciplinary) Semantics |
title | A deep learning method for optimizing semantic segmentation accuracy of remote sensing images based on improved UNet |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deep%20learning%20method%20for%20optimizing%20semantic%20segmentation%20accuracy%20of%20remote%20sensing%20images%20based%20on%20improved%20UNet&rft.jtitle=Scientific%20reports&rft.au=Wang,%20Xiaolei&rft.date=2023-05-10&rft.volume=13&rft.issue=1&rft.spage=7600&rft.epage=7600&rft.pages=7600-7600&rft.artnum=7600&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-023-34379-2&rft_dat=%3Cproquest_doaj_%3E2811791627%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-dcaf3981be48620968c2209207a8231904e8181fa1ca145a74ec0f4a88c77ec03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2811791627&rft_id=info:pmid/37165042&rfr_iscdi=true |