Loading…
Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes
Early detection of diabetes is essential to prevent serious complications in patients. The purpose of this work is to detect and classify type 2 diabetes in patients using machine learning (ML) models, and to select the most optimal model to predict the risk of diabetes. In this paper, five ML model...
Saved in:
Published in: | Diagnostics (Basel) 2023-07, Vol.13 (14), p.2383 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c567t-8a87fb6aa69d6bfc5a4c54f0159d62c27ecfa2eea40258e59dfcbaefb78c37343 |
---|---|
cites | cdi_FETCH-LOGICAL-c567t-8a87fb6aa69d6bfc5a4c54f0159d62c27ecfa2eea40258e59dfcbaefb78c37343 |
container_end_page | |
container_issue | 14 |
container_start_page | 2383 |
container_title | Diagnostics (Basel) |
container_volume | 13 |
creator | Iparraguirre-Villanueva, Orlando Espinola-Linares, Karina Flores Castañeda, Rosalynn Ornella Cabanillas-Carbonell, Michael |
description | Early detection of diabetes is essential to prevent serious complications in patients. The purpose of this work is to detect and classify type 2 diabetes in patients using machine learning (ML) models, and to select the most optimal model to predict the risk of diabetes. In this paper, five ML models, including K-nearest neighbor (K-NN), Bernoulli Naïve Bayes (BNB), decision tree (DT), logistic regression (LR), and support vector machine (SVM), are investigated to predict diabetic patients. A Kaggle-hosted Pima Indian dataset containing 768 patients with and without diabetes was used, including variables such as number of pregnancies the patient has had, blood glucose concentration, diastolic blood pressure, skinfold thickness, body insulin levels, body mass index (BMI), genetic background, diabetes in the family tree, age, and outcome (with/without diabetes). The results show that the K-NN and BNB models outperform the other models. The K-NN model obtained the best accuracy in detecting diabetes, with 79.6% accuracy, while the BNB model obtained 77.2% accuracy in detecting diabetes. Finally, it can be stated that the use of ML models for the early detection of diabetes is very promising. |
doi_str_mv | 10.3390/diagnostics13142383 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ea9bd23a226b45a99239683da3e77989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759040145</galeid><doaj_id>oai_doaj_org_article_ea9bd23a226b45a99239683da3e77989</doaj_id><sourcerecordid>A759040145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-8a87fb6aa69d6bfc5a4c54f0159d62c27ecfa2eea40258e59dfcbaefb78c37343</originalsourceid><addsrcrecordid>eNptkk1vEzEQhlcIRKvSX4CEVuLCJcWfa-8JRWmBSqm4lLM16x1vHW3sYG-Q8u9xmlISVPvg8fh9H2tGU1XvKbnivCWfew9DiHnyNlNOBeOav6rOGVFyJgTVr4_is-oy5xUpq6VcM_m2OuNKUkKZOq_8fLMZvYXJx1BHV9-BffAB6yVCCj4M9V3sccy1i6m-gTTu6muc0D7KIfT13NptggnrxQg5e3eEut9tsGb1tYeuWPK76o2DMePl03lR_fx6c7_4Plv--Ha7mC9nVjZqmmnQynUNQNP2TeesBGGlcITKcmeWKbQOGCIIwqTGknW2A3Sd0pYrLvhFdXvg9hFWZpP8GtLORPDmMRHTYCCVvo1oENquZxwYazohoW0ZbxvNe-CoVKvbwvpyYG223Rp7i2FKMJ5AT1-CfzBD_G0o4UoXWiF8eiKk-GuLeTJrny2OIwSM22yYFoJoJpgu0o__SVdxm0Lp1V7FiWwoJ_9UA5QKfHCxfGz3UDNXsiWCUCGL6uoFVdk9rr2NAZ0v-RMDPxhsijkndM9FUmL2E2demLji-nDcn2fP3_nifwCYitPG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843056130</pqid></control><display><type>article</type><title>Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Iparraguirre-Villanueva, Orlando ; Espinola-Linares, Karina ; Flores Castañeda, Rosalynn Ornella ; Cabanillas-Carbonell, Michael</creator><creatorcontrib>Iparraguirre-Villanueva, Orlando ; Espinola-Linares, Karina ; Flores Castañeda, Rosalynn Ornella ; Cabanillas-Carbonell, Michael</creatorcontrib><description>Early detection of diabetes is essential to prevent serious complications in patients. The purpose of this work is to detect and classify type 2 diabetes in patients using machine learning (ML) models, and to select the most optimal model to predict the risk of diabetes. In this paper, five ML models, including K-nearest neighbor (K-NN), Bernoulli Naïve Bayes (BNB), decision tree (DT), logistic regression (LR), and support vector machine (SVM), are investigated to predict diabetic patients. A Kaggle-hosted Pima Indian dataset containing 768 patients with and without diabetes was used, including variables such as number of pregnancies the patient has had, blood glucose concentration, diastolic blood pressure, skinfold thickness, body insulin levels, body mass index (BMI), genetic background, diabetes in the family tree, age, and outcome (with/without diabetes). The results show that the K-NN and BNB models outperform the other models. The K-NN model obtained the best accuracy in detecting diabetes, with 79.6% accuracy, while the BNB model obtained 77.2% accuracy in detecting diabetes. Finally, it can be stated that the use of ML models for the early detection of diabetes is very promising.</description><identifier>ISSN: 2075-4418</identifier><identifier>EISSN: 2075-4418</identifier><identifier>DOI: 10.3390/diagnostics13142383</identifier><identifier>PMID: 37510127</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Adults ; Algorithms ; analysis ; Artificial intelligence ; Blood sugar ; Classification ; Datasets ; Diabetes ; Diabetics ; Disease ; Insulin ; Machine learning ; Mathematical functions ; Medical research ; Medicine, Experimental ; modeling ; Neural networks ; Patients ; Risk factors ; Type 2 diabetes</subject><ispartof>Diagnostics (Basel), 2023-07, Vol.13 (14), p.2383</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-8a87fb6aa69d6bfc5a4c54f0159d62c27ecfa2eea40258e59dfcbaefb78c37343</citedby><cites>FETCH-LOGICAL-c567t-8a87fb6aa69d6bfc5a4c54f0159d62c27ecfa2eea40258e59dfcbaefb78c37343</cites><orcidid>0000-0002-5573-359X ; 0000-0001-9675-0970 ; 0000-0001-8185-2034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2843056130/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2843056130?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37510127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iparraguirre-Villanueva, Orlando</creatorcontrib><creatorcontrib>Espinola-Linares, Karina</creatorcontrib><creatorcontrib>Flores Castañeda, Rosalynn Ornella</creatorcontrib><creatorcontrib>Cabanillas-Carbonell, Michael</creatorcontrib><title>Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes</title><title>Diagnostics (Basel)</title><addtitle>Diagnostics (Basel)</addtitle><description>Early detection of diabetes is essential to prevent serious complications in patients. The purpose of this work is to detect and classify type 2 diabetes in patients using machine learning (ML) models, and to select the most optimal model to predict the risk of diabetes. In this paper, five ML models, including K-nearest neighbor (K-NN), Bernoulli Naïve Bayes (BNB), decision tree (DT), logistic regression (LR), and support vector machine (SVM), are investigated to predict diabetic patients. A Kaggle-hosted Pima Indian dataset containing 768 patients with and without diabetes was used, including variables such as number of pregnancies the patient has had, blood glucose concentration, diastolic blood pressure, skinfold thickness, body insulin levels, body mass index (BMI), genetic background, diabetes in the family tree, age, and outcome (with/without diabetes). The results show that the K-NN and BNB models outperform the other models. The K-NN model obtained the best accuracy in detecting diabetes, with 79.6% accuracy, while the BNB model obtained 77.2% accuracy in detecting diabetes. Finally, it can be stated that the use of ML models for the early detection of diabetes is very promising.</description><subject>Accuracy</subject><subject>Adults</subject><subject>Algorithms</subject><subject>analysis</subject><subject>Artificial intelligence</subject><subject>Blood sugar</subject><subject>Classification</subject><subject>Datasets</subject><subject>Diabetes</subject><subject>Diabetics</subject><subject>Disease</subject><subject>Insulin</subject><subject>Machine learning</subject><subject>Mathematical functions</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>modeling</subject><subject>Neural networks</subject><subject>Patients</subject><subject>Risk factors</subject><subject>Type 2 diabetes</subject><issn>2075-4418</issn><issn>2075-4418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1vEzEQhlcIRKvSX4CEVuLCJcWfa-8JRWmBSqm4lLM16x1vHW3sYG-Q8u9xmlISVPvg8fh9H2tGU1XvKbnivCWfew9DiHnyNlNOBeOav6rOGVFyJgTVr4_is-oy5xUpq6VcM_m2OuNKUkKZOq_8fLMZvYXJx1BHV9-BffAB6yVCCj4M9V3sccy1i6m-gTTu6muc0D7KIfT13NptggnrxQg5e3eEut9tsGb1tYeuWPK76o2DMePl03lR_fx6c7_4Plv--Ha7mC9nVjZqmmnQynUNQNP2TeesBGGlcITKcmeWKbQOGCIIwqTGknW2A3Sd0pYrLvhFdXvg9hFWZpP8GtLORPDmMRHTYCCVvo1oENquZxwYazohoW0ZbxvNe-CoVKvbwvpyYG223Rp7i2FKMJ5AT1-CfzBD_G0o4UoXWiF8eiKk-GuLeTJrny2OIwSM22yYFoJoJpgu0o__SVdxm0Lp1V7FiWwoJ_9UA5QKfHCxfGz3UDNXsiWCUCGL6uoFVdk9rr2NAZ0v-RMDPxhsijkndM9FUmL2E2demLji-nDcn2fP3_nifwCYitPG</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Iparraguirre-Villanueva, Orlando</creator><creator>Espinola-Linares, Karina</creator><creator>Flores Castañeda, Rosalynn Ornella</creator><creator>Cabanillas-Carbonell, Michael</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5573-359X</orcidid><orcidid>https://orcid.org/0000-0001-9675-0970</orcidid><orcidid>https://orcid.org/0000-0001-8185-2034</orcidid></search><sort><creationdate>20230701</creationdate><title>Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes</title><author>Iparraguirre-Villanueva, Orlando ; Espinola-Linares, Karina ; Flores Castañeda, Rosalynn Ornella ; Cabanillas-Carbonell, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-8a87fb6aa69d6bfc5a4c54f0159d62c27ecfa2eea40258e59dfcbaefb78c37343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Adults</topic><topic>Algorithms</topic><topic>analysis</topic><topic>Artificial intelligence</topic><topic>Blood sugar</topic><topic>Classification</topic><topic>Datasets</topic><topic>Diabetes</topic><topic>Diabetics</topic><topic>Disease</topic><topic>Insulin</topic><topic>Machine learning</topic><topic>Mathematical functions</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>modeling</topic><topic>Neural networks</topic><topic>Patients</topic><topic>Risk factors</topic><topic>Type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iparraguirre-Villanueva, Orlando</creatorcontrib><creatorcontrib>Espinola-Linares, Karina</creatorcontrib><creatorcontrib>Flores Castañeda, Rosalynn Ornella</creatorcontrib><creatorcontrib>Cabanillas-Carbonell, Michael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Diagnostics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iparraguirre-Villanueva, Orlando</au><au>Espinola-Linares, Karina</au><au>Flores Castañeda, Rosalynn Ornella</au><au>Cabanillas-Carbonell, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes</atitle><jtitle>Diagnostics (Basel)</jtitle><addtitle>Diagnostics (Basel)</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>13</volume><issue>14</issue><spage>2383</spage><pages>2383-</pages><issn>2075-4418</issn><eissn>2075-4418</eissn><abstract>Early detection of diabetes is essential to prevent serious complications in patients. The purpose of this work is to detect and classify type 2 diabetes in patients using machine learning (ML) models, and to select the most optimal model to predict the risk of diabetes. In this paper, five ML models, including K-nearest neighbor (K-NN), Bernoulli Naïve Bayes (BNB), decision tree (DT), logistic regression (LR), and support vector machine (SVM), are investigated to predict diabetic patients. A Kaggle-hosted Pima Indian dataset containing 768 patients with and without diabetes was used, including variables such as number of pregnancies the patient has had, blood glucose concentration, diastolic blood pressure, skinfold thickness, body insulin levels, body mass index (BMI), genetic background, diabetes in the family tree, age, and outcome (with/without diabetes). The results show that the K-NN and BNB models outperform the other models. The K-NN model obtained the best accuracy in detecting diabetes, with 79.6% accuracy, while the BNB model obtained 77.2% accuracy in detecting diabetes. Finally, it can be stated that the use of ML models for the early detection of diabetes is very promising.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37510127</pmid><doi>10.3390/diagnostics13142383</doi><orcidid>https://orcid.org/0000-0002-5573-359X</orcidid><orcidid>https://orcid.org/0000-0001-9675-0970</orcidid><orcidid>https://orcid.org/0000-0001-8185-2034</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-4418 |
ispartof | Diagnostics (Basel), 2023-07, Vol.13 (14), p.2383 |
issn | 2075-4418 2075-4418 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ea9bd23a226b45a99239683da3e77989 |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Accuracy Adults Algorithms analysis Artificial intelligence Blood sugar Classification Datasets Diabetes Diabetics Disease Insulin Machine learning Mathematical functions Medical research Medicine, Experimental modeling Neural networks Patients Risk factors Type 2 diabetes |
title | Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Machine%20Learning%20Models%20for%20Early%20Detection%20and%20Accurate%20Classification%20of%20Type%202%20Diabetes&rft.jtitle=Diagnostics%20(Basel)&rft.au=Iparraguirre-Villanueva,%20Orlando&rft.date=2023-07-01&rft.volume=13&rft.issue=14&rft.spage=2383&rft.pages=2383-&rft.issn=2075-4418&rft.eissn=2075-4418&rft_id=info:doi/10.3390/diagnostics13142383&rft_dat=%3Cgale_doaj_%3EA759040145%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-8a87fb6aa69d6bfc5a4c54f0159d62c27ecfa2eea40258e59dfcbaefb78c37343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2843056130&rft_id=info:pmid/37510127&rft_galeid=A759040145&rfr_iscdi=true |