Loading…

Loss of MeCP2 disrupts cell autonomous and autocrine BDNF signaling in mouse glutamatergic neurons

Mutations in the gene cause the neurodevelopmental disorder Rett syndrome (RTT). Previous studies have shown that altered MeCP2 levels result in aberrant neurite outgrowth and glutamatergic synapse formation. However, causal molecular mechanisms are not well understood since MeCP2 is known to regula...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2016-10, Vol.5
Main Authors: Sampathkumar, Charanya, Wu, Yuan-Ju, Vadhvani, Mayur, Trimbuch, Thorsten, Eickholt, Britta, Rosenmund, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c572t-77fa014915612d96fddde1c7fc940549f22037f3429fbad37c86eaf9a56940293
cites cdi_FETCH-LOGICAL-c572t-77fa014915612d96fddde1c7fc940549f22037f3429fbad37c86eaf9a56940293
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 5
creator Sampathkumar, Charanya
Wu, Yuan-Ju
Vadhvani, Mayur
Trimbuch, Thorsten
Eickholt, Britta
Rosenmund, Christian
description Mutations in the gene cause the neurodevelopmental disorder Rett syndrome (RTT). Previous studies have shown that altered MeCP2 levels result in aberrant neurite outgrowth and glutamatergic synapse formation. However, causal molecular mechanisms are not well understood since MeCP2 is known to regulate transcription of a wide range of target genes. Here, we describe a key role for a constitutive BDNF feed forward signaling pathway in regulating synaptic response, general growth and differentiation of glutamatergic neurons. Chronic block of TrkB receptors mimics the MeCP2 deficiency in wildtype glutamatergic neurons, while re-expression of BDNF quantitatively rescues MeCP2 deficiency. We show that BDNF acts cell autonomous and autocrine, as wildtype neurons are not capable of rescuing growth deficits in neighboring MeCP2 deficient neurons and . These findings are relevant for understanding RTT pathophysiology, wherein wildtype and mutant neurons are intermixed throughout the nervous system.
doi_str_mv 10.7554/elife.19374
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_eaa0f71ce81f47009aafd08b447f1eb0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470149881</galeid><doaj_id>oai_doaj_org_article_eaa0f71ce81f47009aafd08b447f1eb0</doaj_id><sourcerecordid>A470149881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-77fa014915612d96fddde1c7fc940549f22037f3429fbad37c86eaf9a56940293</originalsourceid><addsrcrecordid>eNptktuPEyEYxSdG427WffLdkPiiMa3AQIEXk7W62qRe4iXxjVDmY6SZgS7MGP3vZdp13RrhgdvvO4TDqaqHBM8F5-w5dN7BnKhasDvVKcUcz7Bk3-7emp9U5zlvcWmCSUnU_eqECiGpFOq02qxjzig69A6WHylqfE7jbsjIQtchMw4xxD6OGZnQ7Jc2-QDo5av3lyj7NpjOhxb5gCYIUNuNg-nNAKn1FgUYUwz5QXXPmS7D-fV4Vn29fP1l-Xa2_vBmtbxYzywXdJgJ4QwmTBG-ILRRC9c0DRArnFUMc6YcpbgWrmZUuY1pamHlAoxThi8KQFV9Vq0Ouk00W71Lvjfpl47G6_1GTK02afC2Aw3GYCeIBUkcExgrY1yD5YYx4QhscNF6cdDajZseGgthSKY7Ej0-Cf67buMPzQmWXE0CT64FUrwaIQ-693ky1QQoVmkia44x4UwU9PE_6DaOqVhbKMXrmlAm-V-qNeUBPrhY7rWTqL4oTyjGlb8t1Pw_VOkN9N7GAM6X_aOCp0cFhRng59CaMWe9-vzpmH12YG0qoUngbvwgWE9p1LAuadT7NBb60W0Lb9g_2at_A_Qo2U4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953312485</pqid></control><display><type>article</type><title>Loss of MeCP2 disrupts cell autonomous and autocrine BDNF signaling in mouse glutamatergic neurons</title><source>Open Access: PubMed Central</source><source>ProQuest - Publicly Available Content Database</source><creator>Sampathkumar, Charanya ; Wu, Yuan-Ju ; Vadhvani, Mayur ; Trimbuch, Thorsten ; Eickholt, Britta ; Rosenmund, Christian</creator><creatorcontrib>Sampathkumar, Charanya ; Wu, Yuan-Ju ; Vadhvani, Mayur ; Trimbuch, Thorsten ; Eickholt, Britta ; Rosenmund, Christian</creatorcontrib><description>Mutations in the gene cause the neurodevelopmental disorder Rett syndrome (RTT). Previous studies have shown that altered MeCP2 levels result in aberrant neurite outgrowth and glutamatergic synapse formation. However, causal molecular mechanisms are not well understood since MeCP2 is known to regulate transcription of a wide range of target genes. Here, we describe a key role for a constitutive BDNF feed forward signaling pathway in regulating synaptic response, general growth and differentiation of glutamatergic neurons. Chronic block of TrkB receptors mimics the MeCP2 deficiency in wildtype glutamatergic neurons, while re-expression of BDNF quantitatively rescues MeCP2 deficiency. We show that BDNF acts cell autonomous and autocrine, as wildtype neurons are not capable of rescuing growth deficits in neighboring MeCP2 deficient neurons and . These findings are relevant for understanding RTT pathophysiology, wherein wildtype and mutant neurons are intermixed throughout the nervous system.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/elife.19374</identifier><identifier>PMID: 27782879</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>Acids ; Animals ; Autocrine signalling ; Axonogenesis ; BDNF ; Brain-derived neurotrophic factor ; Brain-Derived Neurotrophic Factor - metabolism ; cell autonomous ; Cell Differentiation ; Cell Proliferation ; Cellular signal transduction ; Disease Models, Animal ; Gene mutation ; Genetic aspects ; glutamatergic ; Glutamatergic transmission ; Health aspects ; Male ; MeCP2 protein ; Methyl-CpG binding protein ; Methyl-CpG-Binding Protein 2 - genetics ; Methyl-CpG-Binding Protein 2 - metabolism ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular modelling ; Morphology ; Mutation ; Nervous system ; Neural circuitry ; Neurodevelopmental disorders ; Neurons ; Neurons - physiology ; Neuroscience ; Rett syndrome ; Rett Syndrome - physiopathology ; Rodents ; Signal Transduction ; Synapses ; synaptic transmission ; Synaptogenesis ; Transcription ; TrkB receptors</subject><ispartof>eLife, 2016-10, Vol.5</ispartof><rights>COPYRIGHT 2016 eLife Science Publications, Ltd.</rights><rights>2016, Sampathkumar et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016, Sampathkumar et al 2016 Sampathkumar et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-77fa014915612d96fddde1c7fc940549f22037f3429fbad37c86eaf9a56940293</citedby><cites>FETCH-LOGICAL-c572t-77fa014915612d96fddde1c7fc940549f22037f3429fbad37c86eaf9a56940293</cites><orcidid>0000-0002-3905-2444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1953312485/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1953312485?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27782879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sampathkumar, Charanya</creatorcontrib><creatorcontrib>Wu, Yuan-Ju</creatorcontrib><creatorcontrib>Vadhvani, Mayur</creatorcontrib><creatorcontrib>Trimbuch, Thorsten</creatorcontrib><creatorcontrib>Eickholt, Britta</creatorcontrib><creatorcontrib>Rosenmund, Christian</creatorcontrib><title>Loss of MeCP2 disrupts cell autonomous and autocrine BDNF signaling in mouse glutamatergic neurons</title><title>eLife</title><addtitle>Elife</addtitle><description>Mutations in the gene cause the neurodevelopmental disorder Rett syndrome (RTT). Previous studies have shown that altered MeCP2 levels result in aberrant neurite outgrowth and glutamatergic synapse formation. However, causal molecular mechanisms are not well understood since MeCP2 is known to regulate transcription of a wide range of target genes. Here, we describe a key role for a constitutive BDNF feed forward signaling pathway in regulating synaptic response, general growth and differentiation of glutamatergic neurons. Chronic block of TrkB receptors mimics the MeCP2 deficiency in wildtype glutamatergic neurons, while re-expression of BDNF quantitatively rescues MeCP2 deficiency. We show that BDNF acts cell autonomous and autocrine, as wildtype neurons are not capable of rescuing growth deficits in neighboring MeCP2 deficient neurons and . These findings are relevant for understanding RTT pathophysiology, wherein wildtype and mutant neurons are intermixed throughout the nervous system.</description><subject>Acids</subject><subject>Animals</subject><subject>Autocrine signalling</subject><subject>Axonogenesis</subject><subject>BDNF</subject><subject>Brain-derived neurotrophic factor</subject><subject>Brain-Derived Neurotrophic Factor - metabolism</subject><subject>cell autonomous</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cellular signal transduction</subject><subject>Disease Models, Animal</subject><subject>Gene mutation</subject><subject>Genetic aspects</subject><subject>glutamatergic</subject><subject>Glutamatergic transmission</subject><subject>Health aspects</subject><subject>Male</subject><subject>MeCP2 protein</subject><subject>Methyl-CpG binding protein</subject><subject>Methyl-CpG-Binding Protein 2 - genetics</subject><subject>Methyl-CpG-Binding Protein 2 - metabolism</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Molecular modelling</subject><subject>Morphology</subject><subject>Mutation</subject><subject>Nervous system</subject><subject>Neural circuitry</subject><subject>Neurodevelopmental disorders</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neuroscience</subject><subject>Rett syndrome</subject><subject>Rett Syndrome - physiopathology</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Synapses</subject><subject>synaptic transmission</subject><subject>Synaptogenesis</subject><subject>Transcription</subject><subject>TrkB receptors</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptktuPEyEYxSdG427WffLdkPiiMa3AQIEXk7W62qRe4iXxjVDmY6SZgS7MGP3vZdp13RrhgdvvO4TDqaqHBM8F5-w5dN7BnKhasDvVKcUcz7Bk3-7emp9U5zlvcWmCSUnU_eqECiGpFOq02qxjzig69A6WHylqfE7jbsjIQtchMw4xxD6OGZnQ7Jc2-QDo5av3lyj7NpjOhxb5gCYIUNuNg-nNAKn1FgUYUwz5QXXPmS7D-fV4Vn29fP1l-Xa2_vBmtbxYzywXdJgJ4QwmTBG-ILRRC9c0DRArnFUMc6YcpbgWrmZUuY1pamHlAoxThi8KQFV9Vq0Ouk00W71Lvjfpl47G6_1GTK02afC2Aw3GYCeIBUkcExgrY1yD5YYx4QhscNF6cdDajZseGgthSKY7Ej0-Cf67buMPzQmWXE0CT64FUrwaIQ-693ky1QQoVmkia44x4UwU9PE_6DaOqVhbKMXrmlAm-V-qNeUBPrhY7rWTqL4oTyjGlb8t1Pw_VOkN9N7GAM6X_aOCp0cFhRng59CaMWe9-vzpmH12YG0qoUngbvwgWE9p1LAuadT7NBb60W0Lb9g_2at_A_Qo2U4</recordid><startdate>20161026</startdate><enddate>20161026</enddate><creator>Sampathkumar, Charanya</creator><creator>Wu, Yuan-Ju</creator><creator>Vadhvani, Mayur</creator><creator>Trimbuch, Thorsten</creator><creator>Eickholt, Britta</creator><creator>Rosenmund, Christian</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3905-2444</orcidid></search><sort><creationdate>20161026</creationdate><title>Loss of MeCP2 disrupts cell autonomous and autocrine BDNF signaling in mouse glutamatergic neurons</title><author>Sampathkumar, Charanya ; Wu, Yuan-Ju ; Vadhvani, Mayur ; Trimbuch, Thorsten ; Eickholt, Britta ; Rosenmund, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-77fa014915612d96fddde1c7fc940549f22037f3429fbad37c86eaf9a56940293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acids</topic><topic>Animals</topic><topic>Autocrine signalling</topic><topic>Axonogenesis</topic><topic>BDNF</topic><topic>Brain-derived neurotrophic factor</topic><topic>Brain-Derived Neurotrophic Factor - metabolism</topic><topic>cell autonomous</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cellular signal transduction</topic><topic>Disease Models, Animal</topic><topic>Gene mutation</topic><topic>Genetic aspects</topic><topic>glutamatergic</topic><topic>Glutamatergic transmission</topic><topic>Health aspects</topic><topic>Male</topic><topic>MeCP2 protein</topic><topic>Methyl-CpG binding protein</topic><topic>Methyl-CpG-Binding Protein 2 - genetics</topic><topic>Methyl-CpG-Binding Protein 2 - metabolism</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Molecular modelling</topic><topic>Morphology</topic><topic>Mutation</topic><topic>Nervous system</topic><topic>Neural circuitry</topic><topic>Neurodevelopmental disorders</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neuroscience</topic><topic>Rett syndrome</topic><topic>Rett Syndrome - physiopathology</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Synapses</topic><topic>synaptic transmission</topic><topic>Synaptogenesis</topic><topic>Transcription</topic><topic>TrkB receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sampathkumar, Charanya</creatorcontrib><creatorcontrib>Wu, Yuan-Ju</creatorcontrib><creatorcontrib>Vadhvani, Mayur</creatorcontrib><creatorcontrib>Trimbuch, Thorsten</creatorcontrib><creatorcontrib>Eickholt, Britta</creatorcontrib><creatorcontrib>Rosenmund, Christian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sampathkumar, Charanya</au><au>Wu, Yuan-Ju</au><au>Vadhvani, Mayur</au><au>Trimbuch, Thorsten</au><au>Eickholt, Britta</au><au>Rosenmund, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of MeCP2 disrupts cell autonomous and autocrine BDNF signaling in mouse glutamatergic neurons</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2016-10-26</date><risdate>2016</risdate><volume>5</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Mutations in the gene cause the neurodevelopmental disorder Rett syndrome (RTT). Previous studies have shown that altered MeCP2 levels result in aberrant neurite outgrowth and glutamatergic synapse formation. However, causal molecular mechanisms are not well understood since MeCP2 is known to regulate transcription of a wide range of target genes. Here, we describe a key role for a constitutive BDNF feed forward signaling pathway in regulating synaptic response, general growth and differentiation of glutamatergic neurons. Chronic block of TrkB receptors mimics the MeCP2 deficiency in wildtype glutamatergic neurons, while re-expression of BDNF quantitatively rescues MeCP2 deficiency. We show that BDNF acts cell autonomous and autocrine, as wildtype neurons are not capable of rescuing growth deficits in neighboring MeCP2 deficient neurons and . These findings are relevant for understanding RTT pathophysiology, wherein wildtype and mutant neurons are intermixed throughout the nervous system.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>27782879</pmid><doi>10.7554/elife.19374</doi><orcidid>https://orcid.org/0000-0002-3905-2444</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2016-10, Vol.5
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_eaa0f71ce81f47009aafd08b447f1eb0
source Open Access: PubMed Central; ProQuest - Publicly Available Content Database
subjects Acids
Animals
Autocrine signalling
Axonogenesis
BDNF
Brain-derived neurotrophic factor
Brain-Derived Neurotrophic Factor - metabolism
cell autonomous
Cell Differentiation
Cell Proliferation
Cellular signal transduction
Disease Models, Animal
Gene mutation
Genetic aspects
glutamatergic
Glutamatergic transmission
Health aspects
Male
MeCP2 protein
Methyl-CpG binding protein
Methyl-CpG-Binding Protein 2 - genetics
Methyl-CpG-Binding Protein 2 - metabolism
Mice, Inbred C57BL
Mice, Knockout
Molecular modelling
Morphology
Mutation
Nervous system
Neural circuitry
Neurodevelopmental disorders
Neurons
Neurons - physiology
Neuroscience
Rett syndrome
Rett Syndrome - physiopathology
Rodents
Signal Transduction
Synapses
synaptic transmission
Synaptogenesis
Transcription
TrkB receptors
title Loss of MeCP2 disrupts cell autonomous and autocrine BDNF signaling in mouse glutamatergic neurons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20MeCP2%20disrupts%20cell%20autonomous%20and%20autocrine%20BDNF%20signaling%20in%20mouse%20glutamatergic%20neurons&rft.jtitle=eLife&rft.au=Sampathkumar,%20Charanya&rft.date=2016-10-26&rft.volume=5&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/elife.19374&rft_dat=%3Cgale_doaj_%3EA470149881%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c572t-77fa014915612d96fddde1c7fc940549f22037f3429fbad37c86eaf9a56940293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1953312485&rft_id=info:pmid/27782879&rft_galeid=A470149881&rfr_iscdi=true