Loading…
A refined method of quantifying deceleration capacity index for heart rate variability analysis
Phase-rectified signal averaging (PRSA) was often applied to assess the cardiac vagal modulation. Despite its broad use, this method suffers from the confounding effects of anomalous variants of sinus rhythm. This study aimed to improve the original PRSA method in deceleration capacity (DC) quantifi...
Saved in:
Published in: | Biomedical engineering online 2018-12, Vol.17 (1), p.184-184, Article 184 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c594t-b41994ac7e7dd590adb2ffc8e82a1ffd659c16dbca68cec25011e72979d5ab203 |
---|---|
cites | cdi_FETCH-LOGICAL-c594t-b41994ac7e7dd590adb2ffc8e82a1ffd659c16dbca68cec25011e72979d5ab203 |
container_end_page | 184 |
container_issue | 1 |
container_start_page | 184 |
container_title | Biomedical engineering online |
container_volume | 17 |
creator | Liu, Hongyun Zhan, Ping Shi, Jinlong Wang, Guojing Wang, Buqing Wang, Weidong |
description | Phase-rectified signal averaging (PRSA) was often applied to assess the cardiac vagal modulation. Despite its broad use, this method suffers from the confounding effects of anomalous variants of sinus rhythm. This study aimed to improve the original PRSA method in deceleration capacity (DC) quantification.
The refined deceleration capacity (DC
) was calculated by excluding from non-vagally mediated abnormal variants of sinus rhythms. Holter recordings from 202 healthy subjects and 51 patients with end-stage renal disease (ESRD) have been used for validity. The DC
was compared to original DC (DC
) by the area under receiver operating characteristic curve.
Experimental results demonstrate that the original and refined DCs calculated from 24-h, 2-h, and 30-min Holter recordings are significantly lower in patients with ESRD than those in the healthy group. In receiver operating characteristic curve analysis, the DC
provides better performance than the DC
in distinguishing between the patients with ESRD and healthy control subjects. Furthermore, the refined PRSA technique enhances the low frequency and attenuates high frequency components for spectral analysis in ESRD patients.
The DC
appears to reduce the influence of non-vagally mediated abnormal variants of sinus rhythm and highlighting the pathological influence. DC
, especially assessed from short-term electrocardiography recordings, may be complementary to existing autonomic function assessment, risk stratification, and efficacy prediction strategies. |
doi_str_mv | 10.1186/s12938-018-0618-x |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_eac9c8fd786246729c613ed02b4e82e6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A569036309</galeid><doaj_id>oai_doaj_org_article_eac9c8fd786246729c613ed02b4e82e6</doaj_id><sourcerecordid>A569036309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-b41994ac7e7dd590adb2ffc8e82a1ffd659c16dbca68cec25011e72979d5ab203</originalsourceid><addsrcrecordid>eNptkl2LEzEUhgdR3HX1B3gjAW_0omuSmWQmN0JZ_CgsCH6Ad-FMctKmTJNuMrO0_97UrutWJOSD5DnvSU7eqnrJ6CVjnXyXGVd1N6OsdFmG3aPqnDWtmCkufj5-sD6rnuW8ppRTKtXT6qymQtaCifNKz0lC5wNassFxFS2JjtxMEEbv9j4siUWDAyYYfQzEwBaMH_fEB4s74mIiK4Q0knKO5BaSh94PBwACDPvs8_PqiYMh44u7-aL68fHD96vPs-svnxZX8-uZEaoZZ33DlGrAtNhaKxQF23PnTIcdB-aclUIZJm1vQHYGDReUMWy5apUV0HNaX1SLo66NsNbb5DeQ9jqC1783Ylrqck9vBtQIRpnO2baTvJFFxEhWo6W8b0o6lEXr_VFrO_UbtAbDmGA4ET09CX6ll_FWS66UqHkReHMnkOLNhHnUG59LGQcIGKesOROdEILxQ67X_6DrOKVSvCPFWcdp85daQnmADy6WvOYgqudCKlrLmqpCXf6HKs3ixpsYyj-X_ZOAtycBhRlxNy5hylkvvn09ZdmRNSnmXDxzXw9G9cGN-uhGXdyoD27UuxLz6mEh7yP-2K_-BdKe2vM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158218204</pqid></control><display><type>article</type><title>A refined method of quantifying deceleration capacity index for heart rate variability analysis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Liu, Hongyun ; Zhan, Ping ; Shi, Jinlong ; Wang, Guojing ; Wang, Buqing ; Wang, Weidong</creator><creatorcontrib>Liu, Hongyun ; Zhan, Ping ; Shi, Jinlong ; Wang, Guojing ; Wang, Buqing ; Wang, Weidong</creatorcontrib><description>Phase-rectified signal averaging (PRSA) was often applied to assess the cardiac vagal modulation. Despite its broad use, this method suffers from the confounding effects of anomalous variants of sinus rhythm. This study aimed to improve the original PRSA method in deceleration capacity (DC) quantification.
The refined deceleration capacity (DC
) was calculated by excluding from non-vagally mediated abnormal variants of sinus rhythms. Holter recordings from 202 healthy subjects and 51 patients with end-stage renal disease (ESRD) have been used for validity. The DC
was compared to original DC (DC
) by the area under receiver operating characteristic curve.
Experimental results demonstrate that the original and refined DCs calculated from 24-h, 2-h, and 30-min Holter recordings are significantly lower in patients with ESRD than those in the healthy group. In receiver operating characteristic curve analysis, the DC
provides better performance than the DC
in distinguishing between the patients with ESRD and healthy control subjects. Furthermore, the refined PRSA technique enhances the low frequency and attenuates high frequency components for spectral analysis in ESRD patients.
The DC
appears to reduce the influence of non-vagally mediated abnormal variants of sinus rhythm and highlighting the pathological influence. DC
, especially assessed from short-term electrocardiography recordings, may be complementary to existing autonomic function assessment, risk stratification, and efficacy prediction strategies.</description><identifier>ISSN: 1475-925X</identifier><identifier>EISSN: 1475-925X</identifier><identifier>DOI: 10.1186/s12938-018-0618-x</identifier><identifier>PMID: 30563515</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Adult ; Autonomic nervous system ; Blood pressure ; Cardiovascular disease ; Case-Control Studies ; Data processing ; Deceleration ; Deceleration capacity ; EKG ; Electrocardiography ; End-stage renal disease ; Female ; Heart Rate ; Heart rate variability ; Humans ; Kidney diseases ; Kidney Failure, Chronic - physiopathology ; Male ; Mathematical analysis ; Methods ; Middle Aged ; Nervous system ; Patients ; Phase-rectified signal averaging ; Process controls ; Rhythm ; Short term ; Signal averaging ; Signal Processing, Computer-Assisted ; Sinuses ; Spectral analysis ; Time series ; Vagus nerve</subject><ispartof>Biomedical engineering online, 2018-12, Vol.17 (1), p.184-184, Article 184</ispartof><rights>COPYRIGHT 2018 BioMed Central Ltd.</rights><rights>Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-b41994ac7e7dd590adb2ffc8e82a1ffd659c16dbca68cec25011e72979d5ab203</citedby><cites>FETCH-LOGICAL-c594t-b41994ac7e7dd590adb2ffc8e82a1ffd659c16dbca68cec25011e72979d5ab203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299532/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2158218204?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25730,27900,27901,36988,36989,44565,53765,53767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30563515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Hongyun</creatorcontrib><creatorcontrib>Zhan, Ping</creatorcontrib><creatorcontrib>Shi, Jinlong</creatorcontrib><creatorcontrib>Wang, Guojing</creatorcontrib><creatorcontrib>Wang, Buqing</creatorcontrib><creatorcontrib>Wang, Weidong</creatorcontrib><title>A refined method of quantifying deceleration capacity index for heart rate variability analysis</title><title>Biomedical engineering online</title><addtitle>Biomed Eng Online</addtitle><description>Phase-rectified signal averaging (PRSA) was often applied to assess the cardiac vagal modulation. Despite its broad use, this method suffers from the confounding effects of anomalous variants of sinus rhythm. This study aimed to improve the original PRSA method in deceleration capacity (DC) quantification.
The refined deceleration capacity (DC
) was calculated by excluding from non-vagally mediated abnormal variants of sinus rhythms. Holter recordings from 202 healthy subjects and 51 patients with end-stage renal disease (ESRD) have been used for validity. The DC
was compared to original DC (DC
) by the area under receiver operating characteristic curve.
Experimental results demonstrate that the original and refined DCs calculated from 24-h, 2-h, and 30-min Holter recordings are significantly lower in patients with ESRD than those in the healthy group. In receiver operating characteristic curve analysis, the DC
provides better performance than the DC
in distinguishing between the patients with ESRD and healthy control subjects. Furthermore, the refined PRSA technique enhances the low frequency and attenuates high frequency components for spectral analysis in ESRD patients.
The DC
appears to reduce the influence of non-vagally mediated abnormal variants of sinus rhythm and highlighting the pathological influence. DC
, especially assessed from short-term electrocardiography recordings, may be complementary to existing autonomic function assessment, risk stratification, and efficacy prediction strategies.</description><subject>Adult</subject><subject>Autonomic nervous system</subject><subject>Blood pressure</subject><subject>Cardiovascular disease</subject><subject>Case-Control Studies</subject><subject>Data processing</subject><subject>Deceleration</subject><subject>Deceleration capacity</subject><subject>EKG</subject><subject>Electrocardiography</subject><subject>End-stage renal disease</subject><subject>Female</subject><subject>Heart Rate</subject><subject>Heart rate variability</subject><subject>Humans</subject><subject>Kidney diseases</subject><subject>Kidney Failure, Chronic - physiopathology</subject><subject>Male</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Nervous system</subject><subject>Patients</subject><subject>Phase-rectified signal averaging</subject><subject>Process controls</subject><subject>Rhythm</subject><subject>Short term</subject><subject>Signal averaging</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Sinuses</subject><subject>Spectral analysis</subject><subject>Time series</subject><subject>Vagus nerve</subject><issn>1475-925X</issn><issn>1475-925X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl2LEzEUhgdR3HX1B3gjAW_0omuSmWQmN0JZ_CgsCH6Ad-FMctKmTJNuMrO0_97UrutWJOSD5DnvSU7eqnrJ6CVjnXyXGVd1N6OsdFmG3aPqnDWtmCkufj5-sD6rnuW8ppRTKtXT6qymQtaCifNKz0lC5wNassFxFS2JjtxMEEbv9j4siUWDAyYYfQzEwBaMH_fEB4s74mIiK4Q0knKO5BaSh94PBwACDPvs8_PqiYMh44u7-aL68fHD96vPs-svnxZX8-uZEaoZZ33DlGrAtNhaKxQF23PnTIcdB-aclUIZJm1vQHYGDReUMWy5apUV0HNaX1SLo66NsNbb5DeQ9jqC1783Ylrqck9vBtQIRpnO2baTvJFFxEhWo6W8b0o6lEXr_VFrO_UbtAbDmGA4ET09CX6ll_FWS66UqHkReHMnkOLNhHnUG59LGQcIGKesOROdEILxQ67X_6DrOKVSvCPFWcdp85daQnmADy6WvOYgqudCKlrLmqpCXf6HKs3ixpsYyj-X_ZOAtycBhRlxNy5hylkvvn09ZdmRNSnmXDxzXw9G9cGN-uhGXdyoD27UuxLz6mEh7yP-2K_-BdKe2vM</recordid><startdate>20181218</startdate><enddate>20181218</enddate><creator>Liu, Hongyun</creator><creator>Zhan, Ping</creator><creator>Shi, Jinlong</creator><creator>Wang, Guojing</creator><creator>Wang, Buqing</creator><creator>Wang, Weidong</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20181218</creationdate><title>A refined method of quantifying deceleration capacity index for heart rate variability analysis</title><author>Liu, Hongyun ; Zhan, Ping ; Shi, Jinlong ; Wang, Guojing ; Wang, Buqing ; Wang, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-b41994ac7e7dd590adb2ffc8e82a1ffd659c16dbca68cec25011e72979d5ab203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Autonomic nervous system</topic><topic>Blood pressure</topic><topic>Cardiovascular disease</topic><topic>Case-Control Studies</topic><topic>Data processing</topic><topic>Deceleration</topic><topic>Deceleration capacity</topic><topic>EKG</topic><topic>Electrocardiography</topic><topic>End-stage renal disease</topic><topic>Female</topic><topic>Heart Rate</topic><topic>Heart rate variability</topic><topic>Humans</topic><topic>Kidney diseases</topic><topic>Kidney Failure, Chronic - physiopathology</topic><topic>Male</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Nervous system</topic><topic>Patients</topic><topic>Phase-rectified signal averaging</topic><topic>Process controls</topic><topic>Rhythm</topic><topic>Short term</topic><topic>Signal averaging</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Sinuses</topic><topic>Spectral analysis</topic><topic>Time series</topic><topic>Vagus nerve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hongyun</creatorcontrib><creatorcontrib>Zhan, Ping</creatorcontrib><creatorcontrib>Shi, Jinlong</creatorcontrib><creatorcontrib>Wang, Guojing</creatorcontrib><creatorcontrib>Wang, Buqing</creatorcontrib><creatorcontrib>Wang, Weidong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biomedical engineering online</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hongyun</au><au>Zhan, Ping</au><au>Shi, Jinlong</au><au>Wang, Guojing</au><au>Wang, Buqing</au><au>Wang, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A refined method of quantifying deceleration capacity index for heart rate variability analysis</atitle><jtitle>Biomedical engineering online</jtitle><addtitle>Biomed Eng Online</addtitle><date>2018-12-18</date><risdate>2018</risdate><volume>17</volume><issue>1</issue><spage>184</spage><epage>184</epage><pages>184-184</pages><artnum>184</artnum><issn>1475-925X</issn><eissn>1475-925X</eissn><abstract>Phase-rectified signal averaging (PRSA) was often applied to assess the cardiac vagal modulation. Despite its broad use, this method suffers from the confounding effects of anomalous variants of sinus rhythm. This study aimed to improve the original PRSA method in deceleration capacity (DC) quantification.
The refined deceleration capacity (DC
) was calculated by excluding from non-vagally mediated abnormal variants of sinus rhythms. Holter recordings from 202 healthy subjects and 51 patients with end-stage renal disease (ESRD) have been used for validity. The DC
was compared to original DC (DC
) by the area under receiver operating characteristic curve.
Experimental results demonstrate that the original and refined DCs calculated from 24-h, 2-h, and 30-min Holter recordings are significantly lower in patients with ESRD than those in the healthy group. In receiver operating characteristic curve analysis, the DC
provides better performance than the DC
in distinguishing between the patients with ESRD and healthy control subjects. Furthermore, the refined PRSA technique enhances the low frequency and attenuates high frequency components for spectral analysis in ESRD patients.
The DC
appears to reduce the influence of non-vagally mediated abnormal variants of sinus rhythm and highlighting the pathological influence. DC
, especially assessed from short-term electrocardiography recordings, may be complementary to existing autonomic function assessment, risk stratification, and efficacy prediction strategies.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>30563515</pmid><doi>10.1186/s12938-018-0618-x</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1475-925X |
ispartof | Biomedical engineering online, 2018-12, Vol.17 (1), p.184-184, Article 184 |
issn | 1475-925X 1475-925X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_eac9c8fd786246729c613ed02b4e82e6 |
source | Publicly Available Content Database; PubMed Central |
subjects | Adult Autonomic nervous system Blood pressure Cardiovascular disease Case-Control Studies Data processing Deceleration Deceleration capacity EKG Electrocardiography End-stage renal disease Female Heart Rate Heart rate variability Humans Kidney diseases Kidney Failure, Chronic - physiopathology Male Mathematical analysis Methods Middle Aged Nervous system Patients Phase-rectified signal averaging Process controls Rhythm Short term Signal averaging Signal Processing, Computer-Assisted Sinuses Spectral analysis Time series Vagus nerve |
title | A refined method of quantifying deceleration capacity index for heart rate variability analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T07%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20refined%20method%20of%20quantifying%20deceleration%20capacity%20index%20for%20heart%20rate%20variability%20analysis&rft.jtitle=Biomedical%20engineering%20online&rft.au=Liu,%20Hongyun&rft.date=2018-12-18&rft.volume=17&rft.issue=1&rft.spage=184&rft.epage=184&rft.pages=184-184&rft.artnum=184&rft.issn=1475-925X&rft.eissn=1475-925X&rft_id=info:doi/10.1186/s12938-018-0618-x&rft_dat=%3Cgale_doaj_%3EA569036309%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-b41994ac7e7dd590adb2ffc8e82a1ffd659c16dbca68cec25011e72979d5ab203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2158218204&rft_id=info:pmid/30563515&rft_galeid=A569036309&rfr_iscdi=true |