Loading…
Extended Bethe-Richardson-Gaudin ansatzes for the solution of a mean-field plus separable pairing model with three non-degenerate j-orbits
Based on the Bethe-Richardson-Gaudin ansatz for the standard pairing model, extended Bethe- Richardson-Gaudin ansatzes for eigenvectors of a spherical mean-field plus separable pairing model with three non-degenerate j-orbits are proffered. It is shown that the number of variables appearing in the g...
Saved in:
Published in: | Physics letters. B 2022-10, Vol.833, p.137362, Article 137362 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c426t-dd654331a55c2fb45ec6c5049b95df325e9af02b13045d8e243044012643dd2d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c426t-dd654331a55c2fb45ec6c5049b95df325e9af02b13045d8e243044012643dd2d3 |
container_end_page | |
container_issue | |
container_start_page | 137362 |
container_title | Physics letters. B |
container_volume | 833 |
creator | Pan, Feng Wu, Yingxin Guan, Shengze Qu, Zhibo Dai, Lianrong Draayer, J.P. |
description | Based on the Bethe-Richardson-Gaudin ansatz for the standard pairing model, extended Bethe- Richardson-Gaudin ansatzes for eigenvectors of a spherical mean-field plus separable pairing model with three non-degenerate j-orbits are proffered. It is shown that the number of variables appearing in the general extended ansatz eigenvectors for given number of pairs N is N(N+1)/2. More importantly, when one of the j orbits is 1/2, there are only 2N variables involved in the alternative extended ansatz eigenvectors, which, like the standard pairing model, can be solved efficiently. Numerical results for an application of the model in the ds-shell up to its half-filling are presented, which serves to validate the procedure and illustrates the completeness of the solutions it renders. |
doi_str_mv | 10.1016/j.physletb.2022.137362 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_eaf2aa82a27343aca9ceaddd88da7624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0370269322004968</els_id><doaj_id>oai_doaj_org_article_eaf2aa82a27343aca9ceaddd88da7624</doaj_id><sourcerecordid>S0370269322004968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-dd654331a55c2fb45ec6c5049b95df325e9af02b13045d8e243044012643dd2d3</originalsourceid><addsrcrecordid>eNqFkd2KFDEQRoMoOI6-guQFesxfp7vv1GVdFxYE0etQnaqeydCTNElGXR9hn9peZ_HWqxShvlNVHMbeSrGTQtp3x91yuC8z1XGnhFI7qTtt1TO2kX2nG2VM-5xthO5Eo-ygX7JXpRyFELIVdsMern9VikjIP1I9UPM1-ANkLCk2N3DGEDnEAvU3FT6lzNcWXtJ8riFFniYO_EQQmynQjHyZz4UXWiDDOBNfIOQQ9_yUkGb-M9TDGs9EPK5wpD1FylCJH5uUx1DLa_ZigrnQm6d3y75_uv529bm5-3Jze_XhrvFG2dog2tZoLaFtvZpG05K3vhVmGIcWJ61aGmASapRamBZ7UmYtjJDKGo2oUG_Z7YWLCY5uyeEE-d4lCO7vR8p7B7kGP5MjmBRAr0B12mjwMHgCROx7hM6u5C2zF5bPqZRM0z-eFO7RjlsnPNlxj3bcxc4afH8J0nrpj0DZFR8oesKQydd1lfA_xB_JdJ72</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extended Bethe-Richardson-Gaudin ansatzes for the solution of a mean-field plus separable pairing model with three non-degenerate j-orbits</title><source>ScienceDirect Freedom Collection</source><source>Elsevier ScienceDirect Journals</source><creator>Pan, Feng ; Wu, Yingxin ; Guan, Shengze ; Qu, Zhibo ; Dai, Lianrong ; Draayer, J.P.</creator><creatorcontrib>Pan, Feng ; Wu, Yingxin ; Guan, Shengze ; Qu, Zhibo ; Dai, Lianrong ; Draayer, J.P.</creatorcontrib><description>Based on the Bethe-Richardson-Gaudin ansatz for the standard pairing model, extended Bethe- Richardson-Gaudin ansatzes for eigenvectors of a spherical mean-field plus separable pairing model with three non-degenerate j-orbits are proffered. It is shown that the number of variables appearing in the general extended ansatz eigenvectors for given number of pairs N is N(N+1)/2. More importantly, when one of the j orbits is 1/2, there are only 2N variables involved in the alternative extended ansatz eigenvectors, which, like the standard pairing model, can be solved efficiently. Numerical results for an application of the model in the ds-shell up to its half-filling are presented, which serves to validate the procedure and illustrates the completeness of the solutions it renders.</description><identifier>ISSN: 0370-2693</identifier><identifier>EISSN: 1873-2445</identifier><identifier>DOI: 10.1016/j.physletb.2022.137362</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bethe ansatz ; Exactly solvable models ; Separable pairing</subject><ispartof>Physics letters. B, 2022-10, Vol.833, p.137362, Article 137362</ispartof><rights>2022 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-dd654331a55c2fb45ec6c5049b95df325e9af02b13045d8e243044012643dd2d3</citedby><cites>FETCH-LOGICAL-c426t-dd654331a55c2fb45ec6c5049b95df325e9af02b13045d8e243044012643dd2d3</cites><orcidid>0000-0001-5118-1719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0370269322004968$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Wu, Yingxin</creatorcontrib><creatorcontrib>Guan, Shengze</creatorcontrib><creatorcontrib>Qu, Zhibo</creatorcontrib><creatorcontrib>Dai, Lianrong</creatorcontrib><creatorcontrib>Draayer, J.P.</creatorcontrib><title>Extended Bethe-Richardson-Gaudin ansatzes for the solution of a mean-field plus separable pairing model with three non-degenerate j-orbits</title><title>Physics letters. B</title><description>Based on the Bethe-Richardson-Gaudin ansatz for the standard pairing model, extended Bethe- Richardson-Gaudin ansatzes for eigenvectors of a spherical mean-field plus separable pairing model with three non-degenerate j-orbits are proffered. It is shown that the number of variables appearing in the general extended ansatz eigenvectors for given number of pairs N is N(N+1)/2. More importantly, when one of the j orbits is 1/2, there are only 2N variables involved in the alternative extended ansatz eigenvectors, which, like the standard pairing model, can be solved efficiently. Numerical results for an application of the model in the ds-shell up to its half-filling are presented, which serves to validate the procedure and illustrates the completeness of the solutions it renders.</description><subject>Bethe ansatz</subject><subject>Exactly solvable models</subject><subject>Separable pairing</subject><issn>0370-2693</issn><issn>1873-2445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkd2KFDEQRoMoOI6-guQFesxfp7vv1GVdFxYE0etQnaqeydCTNElGXR9hn9peZ_HWqxShvlNVHMbeSrGTQtp3x91yuC8z1XGnhFI7qTtt1TO2kX2nG2VM-5xthO5Eo-ygX7JXpRyFELIVdsMern9VikjIP1I9UPM1-ANkLCk2N3DGEDnEAvU3FT6lzNcWXtJ8riFFniYO_EQQmynQjHyZz4UXWiDDOBNfIOQQ9_yUkGb-M9TDGs9EPK5wpD1FylCJH5uUx1DLa_ZigrnQm6d3y75_uv529bm5-3Jze_XhrvFG2dog2tZoLaFtvZpG05K3vhVmGIcWJ61aGmASapRamBZ7UmYtjJDKGo2oUG_Z7YWLCY5uyeEE-d4lCO7vR8p7B7kGP5MjmBRAr0B12mjwMHgCROx7hM6u5C2zF5bPqZRM0z-eFO7RjlsnPNlxj3bcxc4afH8J0nrpj0DZFR8oesKQydd1lfA_xB_JdJ72</recordid><startdate>20221010</startdate><enddate>20221010</enddate><creator>Pan, Feng</creator><creator>Wu, Yingxin</creator><creator>Guan, Shengze</creator><creator>Qu, Zhibo</creator><creator>Dai, Lianrong</creator><creator>Draayer, J.P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5118-1719</orcidid></search><sort><creationdate>20221010</creationdate><title>Extended Bethe-Richardson-Gaudin ansatzes for the solution of a mean-field plus separable pairing model with three non-degenerate j-orbits</title><author>Pan, Feng ; Wu, Yingxin ; Guan, Shengze ; Qu, Zhibo ; Dai, Lianrong ; Draayer, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-dd654331a55c2fb45ec6c5049b95df325e9af02b13045d8e243044012643dd2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bethe ansatz</topic><topic>Exactly solvable models</topic><topic>Separable pairing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Wu, Yingxin</creatorcontrib><creatorcontrib>Guan, Shengze</creatorcontrib><creatorcontrib>Qu, Zhibo</creatorcontrib><creatorcontrib>Dai, Lianrong</creatorcontrib><creatorcontrib>Draayer, J.P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Physics letters. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Feng</au><au>Wu, Yingxin</au><au>Guan, Shengze</au><au>Qu, Zhibo</au><au>Dai, Lianrong</au><au>Draayer, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Bethe-Richardson-Gaudin ansatzes for the solution of a mean-field plus separable pairing model with three non-degenerate j-orbits</atitle><jtitle>Physics letters. B</jtitle><date>2022-10-10</date><risdate>2022</risdate><volume>833</volume><spage>137362</spage><pages>137362-</pages><artnum>137362</artnum><issn>0370-2693</issn><eissn>1873-2445</eissn><abstract>Based on the Bethe-Richardson-Gaudin ansatz for the standard pairing model, extended Bethe- Richardson-Gaudin ansatzes for eigenvectors of a spherical mean-field plus separable pairing model with three non-degenerate j-orbits are proffered. It is shown that the number of variables appearing in the general extended ansatz eigenvectors for given number of pairs N is N(N+1)/2. More importantly, when one of the j orbits is 1/2, there are only 2N variables involved in the alternative extended ansatz eigenvectors, which, like the standard pairing model, can be solved efficiently. Numerical results for an application of the model in the ds-shell up to its half-filling are presented, which serves to validate the procedure and illustrates the completeness of the solutions it renders.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physletb.2022.137362</doi><orcidid>https://orcid.org/0000-0001-5118-1719</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-2693 |
ispartof | Physics letters. B, 2022-10, Vol.833, p.137362, Article 137362 |
issn | 0370-2693 1873-2445 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_eaf2aa82a27343aca9ceaddd88da7624 |
source | ScienceDirect Freedom Collection; Elsevier ScienceDirect Journals |
subjects | Bethe ansatz Exactly solvable models Separable pairing |
title | Extended Bethe-Richardson-Gaudin ansatzes for the solution of a mean-field plus separable pairing model with three non-degenerate j-orbits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Bethe-Richardson-Gaudin%20ansatzes%20for%20the%20solution%20of%20a%20mean-field%20plus%20separable%20pairing%20model%20with%20three%20non-degenerate%20j-orbits&rft.jtitle=Physics%20letters.%20B&rft.au=Pan,%20Feng&rft.date=2022-10-10&rft.volume=833&rft.spage=137362&rft.pages=137362-&rft.artnum=137362&rft.issn=0370-2693&rft.eissn=1873-2445&rft_id=info:doi/10.1016/j.physletb.2022.137362&rft_dat=%3Celsevier_doaj_%3ES0370269322004968%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-dd654331a55c2fb45ec6c5049b95df325e9af02b13045d8e243044012643dd2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |