Loading…
Studies on Finite Element Analysis in Hydroforming of Nimonic 90 Sheet
The primary goal of this study was to investigate the formability of Nimonic 90 sheet which performs well at high temperatures and pressures, making it ideal for applications in the aerospace, processing, and manufacturing industries. In this present study, finite element analysis (FEA) and optimiza...
Saved in:
Published in: | Mathematics (Basel) 2023-05, Vol.11 (11), p.2437 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The primary goal of this study was to investigate the formability of Nimonic 90 sheet which performs well at high temperatures and pressures, making it ideal for applications in the aerospace, processing, and manufacturing industries. In this present study, finite element analysis (FEA) and optimization of process parameters for formability of Nimonic 90 in sheet hydroforming were investigated. The material’s mechanical properties were obtained by uniaxial tensile tests as per the standard ASTM E8/E8M. The sheet hydroforming process was first simulated to obtain maximum pressure (53.46 MPa) using the FEA and was then validated using an experiment. The maximum pressure obtained was 50.5 MPa in experimentation. Since fully experimental or simulation designs are impractical, the Box–Behnken design (BBD) was used to investigate various process parameters. Formability was measured by the forming limit diagram (FLD) and maximum deformation achieved without failure. Analysis of variance (ANOVA) results also revealed that pressure and thickness were the most effective parameters for achieving maximum deformation without failure. Response surface methodology (RSM) optimizer was used to predict optimized process parameter to achieve maximized response (deformation) without failure. Experimental validation was carried out for the optimized parameters. The percentage of error between experimental and simulation results for maximum deformation was less than 5%. The findings revealed that all the aspects in the presented regression model and FEM simulation were effective on response values. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math11112437 |