Loading…
Numerical simulation of a fractional stochastic delay differential equations using spectral scheme: a comprehensive stability analysis
The fractional stochastic delay differential equation (FSDDE) is a powerful mathematical tool for modeling complex systems that exhibit both fractional order dynamics and stochasticity with time delays. The purpose of this study is to explore the stability analysis of a system of FSDDEs. Our study e...
Saved in:
Published in: | Scientific reports 2024-03, Vol.14 (1), p.6930-6930, Article 6930 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c541t-50afa88e669bf73e048659f10520ce7d7be0d300ad062052c48eb9099efe9133 |
---|---|
cites | cdi_FETCH-LOGICAL-c541t-50afa88e669bf73e048659f10520ce7d7be0d300ad062052c48eb9099efe9133 |
container_end_page | 6930 |
container_issue | 1 |
container_start_page | 6930 |
container_title | Scientific reports |
container_volume | 14 |
creator | Li, Shuo Khan, Sami Ullah Riaz, Muhammad Bilal AlQahtani, Salman A. Alamri, Atif M. |
description | The fractional stochastic delay differential equation (FSDDE) is a powerful mathematical tool for modeling complex systems that exhibit both fractional order dynamics and stochasticity with time delays. The purpose of this study is to explore the stability analysis of a system of FSDDEs. Our study emphasizes the interaction between fractional calculus, stochasticity, and time delays in understanding the stability of such systems. Analyzing the moments of the system’s solutions, we investigate stochasticity’s influence on FSDDS. The article provides practical insight into solving FSDDS efficiently using various numerical techniques. Additionally, this research focuses both on asymptotic as well as Lyapunov stability of FSDDS. The local stability conditions are clearly presented and also the effects of a fractional orders with delay on the stability properties are examine. Through a comprehensive test of a stability criteria, practical examples and numerical simulations we demonstrate the complexity and challenges concern with the analyzing FSDDEs. |
doi_str_mv | 10.1038/s41598-024-56944-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_eb168c6c8079416fbdbd79f4558c8b81</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_eb168c6c8079416fbdbd79f4558c8b81</doaj_id><sourcerecordid>2974008675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-50afa88e669bf73e048659f10520ce7d7be0d300ad062052c48eb9099efe9133</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEolXpC3BAkbhwCYwd27G5IFTxp1IFl94txxnvepXEWzuptH0AnhtvUkrLAV9sz3zzs2f0FcVrAu8J1PJDYoQrWQFlFReKseruWXFKgfGK1pQ-f3Q-Kc5T2kFenCpG1MvipJackkbR0-LXj3nA6K3py-SHuTeTD2MZXGlKF4093o6pKditSZO3ZYe9OZSddw4jjpPPWbyZl7JUzsmPmzLt0U7xWGa3OODHzLJh2Efc4pj8LWacaX3vp0NpMv2QfHpVvHCmT3h-v58V11-_XF98r65-fru8-HxVWc7IVHEwzkiJQqjWNTUCk4IrR3JnYLHpmhahqwFMB4LmoGUSWwVKoUNF6vqsuFyxXTA7vY9-MPGgg_F6CYS40SbmLnvU2BIhrbASmjw04dqu7RrlGOfSylaSzPq0svZzO2Bn8zByz0-gTzOj3-pNuNUElADZ8Ex4d0-I4WbGNOnBJ4t9b0YMc9JUNQxAikX69h_pLswxD29R1VxISo8quqpsDClFdA-_IaCPrtGra3R2jV5co-9y0ZvHfTyU_PFIFtSrIOXUuMH49-3_YH8DgDTRUA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973568225</pqid></control><display><type>article</type><title>Numerical simulation of a fractional stochastic delay differential equations using spectral scheme: a comprehensive stability analysis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Li, Shuo ; Khan, Sami Ullah ; Riaz, Muhammad Bilal ; AlQahtani, Salman A. ; Alamri, Atif M.</creator><creatorcontrib>Li, Shuo ; Khan, Sami Ullah ; Riaz, Muhammad Bilal ; AlQahtani, Salman A. ; Alamri, Atif M.</creatorcontrib><description>The fractional stochastic delay differential equation (FSDDE) is a powerful mathematical tool for modeling complex systems that exhibit both fractional order dynamics and stochasticity with time delays. The purpose of this study is to explore the stability analysis of a system of FSDDEs. Our study emphasizes the interaction between fractional calculus, stochasticity, and time delays in understanding the stability of such systems. Analyzing the moments of the system’s solutions, we investigate stochasticity’s influence on FSDDS. The article provides practical insight into solving FSDDS efficiently using various numerical techniques. Additionally, this research focuses both on asymptotic as well as Lyapunov stability of FSDDS. The local stability conditions are clearly presented and also the effects of a fractional orders with delay on the stability properties are examine. Through a comprehensive test of a stability criteria, practical examples and numerical simulations we demonstrate the complexity and challenges concern with the analyzing FSDDEs.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-56944-z</identifier><identifier>PMID: 38521792</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/1041 ; 639/705/1042 ; Biology ; Calculus ; Differential equations ; Engineering ; Fractional stochastic delay differential equations ; Humanities and Social Sciences ; Information science ; Legendre–Gauss–Lobatto nodes ; Mathematical models ; Mathematics ; multidisciplinary ; Partial differential equations ; Science ; Science (multidisciplinary) ; Spectral method ; Stability analysis ; Stochastic models ; Stochasticity ; Timing</subject><ispartof>Scientific reports, 2024-03, Vol.14 (1), p.6930-6930, Article 6930</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-50afa88e669bf73e048659f10520ce7d7be0d300ad062052c48eb9099efe9133</citedby><cites>FETCH-LOGICAL-c541t-50afa88e669bf73e048659f10520ce7d7be0d300ad062052c48eb9099efe9133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2973568225/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2973568225?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38521792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shuo</creatorcontrib><creatorcontrib>Khan, Sami Ullah</creatorcontrib><creatorcontrib>Riaz, Muhammad Bilal</creatorcontrib><creatorcontrib>AlQahtani, Salman A.</creatorcontrib><creatorcontrib>Alamri, Atif M.</creatorcontrib><title>Numerical simulation of a fractional stochastic delay differential equations using spectral scheme: a comprehensive stability analysis</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The fractional stochastic delay differential equation (FSDDE) is a powerful mathematical tool for modeling complex systems that exhibit both fractional order dynamics and stochasticity with time delays. The purpose of this study is to explore the stability analysis of a system of FSDDEs. Our study emphasizes the interaction between fractional calculus, stochasticity, and time delays in understanding the stability of such systems. Analyzing the moments of the system’s solutions, we investigate stochasticity’s influence on FSDDS. The article provides practical insight into solving FSDDS efficiently using various numerical techniques. Additionally, this research focuses both on asymptotic as well as Lyapunov stability of FSDDS. The local stability conditions are clearly presented and also the effects of a fractional orders with delay on the stability properties are examine. Through a comprehensive test of a stability criteria, practical examples and numerical simulations we demonstrate the complexity and challenges concern with the analyzing FSDDEs.</description><subject>639/705/1041</subject><subject>639/705/1042</subject><subject>Biology</subject><subject>Calculus</subject><subject>Differential equations</subject><subject>Engineering</subject><subject>Fractional stochastic delay differential equations</subject><subject>Humanities and Social Sciences</subject><subject>Information science</subject><subject>Legendre–Gauss–Lobatto nodes</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>multidisciplinary</subject><subject>Partial differential equations</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectral method</subject><subject>Stability analysis</subject><subject>Stochastic models</subject><subject>Stochasticity</subject><subject>Timing</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9u1DAQxiMEolXpC3BAkbhwCYwd27G5IFTxp1IFl94txxnvepXEWzuptH0AnhtvUkrLAV9sz3zzs2f0FcVrAu8J1PJDYoQrWQFlFReKseruWXFKgfGK1pQ-f3Q-Kc5T2kFenCpG1MvipJackkbR0-LXj3nA6K3py-SHuTeTD2MZXGlKF4093o6pKditSZO3ZYe9OZSddw4jjpPPWbyZl7JUzsmPmzLt0U7xWGa3OODHzLJh2Efc4pj8LWacaX3vp0NpMv2QfHpVvHCmT3h-v58V11-_XF98r65-fru8-HxVWc7IVHEwzkiJQqjWNTUCk4IrR3JnYLHpmhahqwFMB4LmoGUSWwVKoUNF6vqsuFyxXTA7vY9-MPGgg_F6CYS40SbmLnvU2BIhrbASmjw04dqu7RrlGOfSylaSzPq0svZzO2Bn8zByz0-gTzOj3-pNuNUElADZ8Ex4d0-I4WbGNOnBJ4t9b0YMc9JUNQxAikX69h_pLswxD29R1VxISo8quqpsDClFdA-_IaCPrtGra3R2jV5co-9y0ZvHfTyU_PFIFtSrIOXUuMH49-3_YH8DgDTRUA</recordid><startdate>20240323</startdate><enddate>20240323</enddate><creator>Li, Shuo</creator><creator>Khan, Sami Ullah</creator><creator>Riaz, Muhammad Bilal</creator><creator>AlQahtani, Salman A.</creator><creator>Alamri, Atif M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240323</creationdate><title>Numerical simulation of a fractional stochastic delay differential equations using spectral scheme: a comprehensive stability analysis</title><author>Li, Shuo ; Khan, Sami Ullah ; Riaz, Muhammad Bilal ; AlQahtani, Salman A. ; Alamri, Atif M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-50afa88e669bf73e048659f10520ce7d7be0d300ad062052c48eb9099efe9133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/705/1041</topic><topic>639/705/1042</topic><topic>Biology</topic><topic>Calculus</topic><topic>Differential equations</topic><topic>Engineering</topic><topic>Fractional stochastic delay differential equations</topic><topic>Humanities and Social Sciences</topic><topic>Information science</topic><topic>Legendre–Gauss–Lobatto nodes</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>multidisciplinary</topic><topic>Partial differential equations</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectral method</topic><topic>Stability analysis</topic><topic>Stochastic models</topic><topic>Stochasticity</topic><topic>Timing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shuo</creatorcontrib><creatorcontrib>Khan, Sami Ullah</creatorcontrib><creatorcontrib>Riaz, Muhammad Bilal</creatorcontrib><creatorcontrib>AlQahtani, Salman A.</creatorcontrib><creatorcontrib>Alamri, Atif M.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shuo</au><au>Khan, Sami Ullah</au><au>Riaz, Muhammad Bilal</au><au>AlQahtani, Salman A.</au><au>Alamri, Atif M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of a fractional stochastic delay differential equations using spectral scheme: a comprehensive stability analysis</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-03-23</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>6930</spage><epage>6930</epage><pages>6930-6930</pages><artnum>6930</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The fractional stochastic delay differential equation (FSDDE) is a powerful mathematical tool for modeling complex systems that exhibit both fractional order dynamics and stochasticity with time delays. The purpose of this study is to explore the stability analysis of a system of FSDDEs. Our study emphasizes the interaction between fractional calculus, stochasticity, and time delays in understanding the stability of such systems. Analyzing the moments of the system’s solutions, we investigate stochasticity’s influence on FSDDS. The article provides practical insight into solving FSDDS efficiently using various numerical techniques. Additionally, this research focuses both on asymptotic as well as Lyapunov stability of FSDDS. The local stability conditions are clearly presented and also the effects of a fractional orders with delay on the stability properties are examine. Through a comprehensive test of a stability criteria, practical examples and numerical simulations we demonstrate the complexity and challenges concern with the analyzing FSDDEs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38521792</pmid><doi>10.1038/s41598-024-56944-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-03, Vol.14 (1), p.6930-6930, Article 6930 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_eb168c6c8079416fbdbd79f4558c8b81 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/705/1041 639/705/1042 Biology Calculus Differential equations Engineering Fractional stochastic delay differential equations Humanities and Social Sciences Information science Legendre–Gauss–Lobatto nodes Mathematical models Mathematics multidisciplinary Partial differential equations Science Science (multidisciplinary) Spectral method Stability analysis Stochastic models Stochasticity Timing |
title | Numerical simulation of a fractional stochastic delay differential equations using spectral scheme: a comprehensive stability analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20a%20fractional%20stochastic%20delay%20differential%20equations%20using%20spectral%20scheme:%20a%20comprehensive%20stability%20analysis&rft.jtitle=Scientific%20reports&rft.au=Li,%20Shuo&rft.date=2024-03-23&rft.volume=14&rft.issue=1&rft.spage=6930&rft.epage=6930&rft.pages=6930-6930&rft.artnum=6930&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-56944-z&rft_dat=%3Cproquest_doaj_%3E2974008675%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-50afa88e669bf73e048659f10520ce7d7be0d300ad062052c48eb9099efe9133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2973568225&rft_id=info:pmid/38521792&rfr_iscdi=true |