Loading…

Numerical simulation of a fractional stochastic delay differential equations using spectral scheme: a comprehensive stability analysis

The fractional stochastic delay differential equation (FSDDE) is a powerful mathematical tool for modeling complex systems that exhibit both fractional order dynamics and stochasticity with time delays. The purpose of this study is to explore the stability analysis of a system of FSDDEs. Our study e...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-03, Vol.14 (1), p.6930-6930, Article 6930
Main Authors: Li, Shuo, Khan, Sami Ullah, Riaz, Muhammad Bilal, AlQahtani, Salman A., Alamri, Atif M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-50afa88e669bf73e048659f10520ce7d7be0d300ad062052c48eb9099efe9133
cites cdi_FETCH-LOGICAL-c541t-50afa88e669bf73e048659f10520ce7d7be0d300ad062052c48eb9099efe9133
container_end_page 6930
container_issue 1
container_start_page 6930
container_title Scientific reports
container_volume 14
creator Li, Shuo
Khan, Sami Ullah
Riaz, Muhammad Bilal
AlQahtani, Salman A.
Alamri, Atif M.
description The fractional stochastic delay differential equation (FSDDE) is a powerful mathematical tool for modeling complex systems that exhibit both fractional order dynamics and stochasticity with time delays. The purpose of this study is to explore the stability analysis of a system of FSDDEs. Our study emphasizes the interaction between fractional calculus, stochasticity, and time delays in understanding the stability of such systems. Analyzing the moments of the system’s solutions, we investigate stochasticity’s influence on FSDDS. The article provides practical insight into solving FSDDS efficiently using various numerical techniques. Additionally, this research focuses both on asymptotic as well as Lyapunov stability of FSDDS. The local stability conditions are clearly presented and also the effects of a fractional orders with delay on the stability properties are examine. Through a comprehensive test of a stability criteria, practical examples and numerical simulations we demonstrate the complexity and challenges concern with the analyzing FSDDEs.
doi_str_mv 10.1038/s41598-024-56944-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_eb168c6c8079416fbdbd79f4558c8b81</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_eb168c6c8079416fbdbd79f4558c8b81</doaj_id><sourcerecordid>2974008675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-50afa88e669bf73e048659f10520ce7d7be0d300ad062052c48eb9099efe9133</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEolXpC3BAkbhwCYwd27G5IFTxp1IFl94txxnvepXEWzuptH0AnhtvUkrLAV9sz3zzs2f0FcVrAu8J1PJDYoQrWQFlFReKseruWXFKgfGK1pQ-f3Q-Kc5T2kFenCpG1MvipJackkbR0-LXj3nA6K3py-SHuTeTD2MZXGlKF4093o6pKditSZO3ZYe9OZSddw4jjpPPWbyZl7JUzsmPmzLt0U7xWGa3OODHzLJh2Efc4pj8LWacaX3vp0NpMv2QfHpVvHCmT3h-v58V11-_XF98r65-fru8-HxVWc7IVHEwzkiJQqjWNTUCk4IrR3JnYLHpmhahqwFMB4LmoGUSWwVKoUNF6vqsuFyxXTA7vY9-MPGgg_F6CYS40SbmLnvU2BIhrbASmjw04dqu7RrlGOfSylaSzPq0svZzO2Bn8zByz0-gTzOj3-pNuNUElADZ8Ex4d0-I4WbGNOnBJ4t9b0YMc9JUNQxAikX69h_pLswxD29R1VxISo8quqpsDClFdA-_IaCPrtGra3R2jV5co-9y0ZvHfTyU_PFIFtSrIOXUuMH49-3_YH8DgDTRUA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973568225</pqid></control><display><type>article</type><title>Numerical simulation of a fractional stochastic delay differential equations using spectral scheme: a comprehensive stability analysis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Li, Shuo ; Khan, Sami Ullah ; Riaz, Muhammad Bilal ; AlQahtani, Salman A. ; Alamri, Atif M.</creator><creatorcontrib>Li, Shuo ; Khan, Sami Ullah ; Riaz, Muhammad Bilal ; AlQahtani, Salman A. ; Alamri, Atif M.</creatorcontrib><description>The fractional stochastic delay differential equation (FSDDE) is a powerful mathematical tool for modeling complex systems that exhibit both fractional order dynamics and stochasticity with time delays. The purpose of this study is to explore the stability analysis of a system of FSDDEs. Our study emphasizes the interaction between fractional calculus, stochasticity, and time delays in understanding the stability of such systems. Analyzing the moments of the system’s solutions, we investigate stochasticity’s influence on FSDDS. The article provides practical insight into solving FSDDS efficiently using various numerical techniques. Additionally, this research focuses both on asymptotic as well as Lyapunov stability of FSDDS. The local stability conditions are clearly presented and also the effects of a fractional orders with delay on the stability properties are examine. Through a comprehensive test of a stability criteria, practical examples and numerical simulations we demonstrate the complexity and challenges concern with the analyzing FSDDEs.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-56944-z</identifier><identifier>PMID: 38521792</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/1041 ; 639/705/1042 ; Biology ; Calculus ; Differential equations ; Engineering ; Fractional stochastic delay differential equations ; Humanities and Social Sciences ; Information science ; Legendre–Gauss–Lobatto nodes ; Mathematical models ; Mathematics ; multidisciplinary ; Partial differential equations ; Science ; Science (multidisciplinary) ; Spectral method ; Stability analysis ; Stochastic models ; Stochasticity ; Timing</subject><ispartof>Scientific reports, 2024-03, Vol.14 (1), p.6930-6930, Article 6930</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-50afa88e669bf73e048659f10520ce7d7be0d300ad062052c48eb9099efe9133</citedby><cites>FETCH-LOGICAL-c541t-50afa88e669bf73e048659f10520ce7d7be0d300ad062052c48eb9099efe9133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2973568225/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2973568225?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38521792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shuo</creatorcontrib><creatorcontrib>Khan, Sami Ullah</creatorcontrib><creatorcontrib>Riaz, Muhammad Bilal</creatorcontrib><creatorcontrib>AlQahtani, Salman A.</creatorcontrib><creatorcontrib>Alamri, Atif M.</creatorcontrib><title>Numerical simulation of a fractional stochastic delay differential equations using spectral scheme: a comprehensive stability analysis</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The fractional stochastic delay differential equation (FSDDE) is a powerful mathematical tool for modeling complex systems that exhibit both fractional order dynamics and stochasticity with time delays. The purpose of this study is to explore the stability analysis of a system of FSDDEs. Our study emphasizes the interaction between fractional calculus, stochasticity, and time delays in understanding the stability of such systems. Analyzing the moments of the system’s solutions, we investigate stochasticity’s influence on FSDDS. The article provides practical insight into solving FSDDS efficiently using various numerical techniques. Additionally, this research focuses both on asymptotic as well as Lyapunov stability of FSDDS. The local stability conditions are clearly presented and also the effects of a fractional orders with delay on the stability properties are examine. Through a comprehensive test of a stability criteria, practical examples and numerical simulations we demonstrate the complexity and challenges concern with the analyzing FSDDEs.</description><subject>639/705/1041</subject><subject>639/705/1042</subject><subject>Biology</subject><subject>Calculus</subject><subject>Differential equations</subject><subject>Engineering</subject><subject>Fractional stochastic delay differential equations</subject><subject>Humanities and Social Sciences</subject><subject>Information science</subject><subject>Legendre–Gauss–Lobatto nodes</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>multidisciplinary</subject><subject>Partial differential equations</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectral method</subject><subject>Stability analysis</subject><subject>Stochastic models</subject><subject>Stochasticity</subject><subject>Timing</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9u1DAQxiMEolXpC3BAkbhwCYwd27G5IFTxp1IFl94txxnvepXEWzuptH0AnhtvUkrLAV9sz3zzs2f0FcVrAu8J1PJDYoQrWQFlFReKseruWXFKgfGK1pQ-f3Q-Kc5T2kFenCpG1MvipJackkbR0-LXj3nA6K3py-SHuTeTD2MZXGlKF4093o6pKditSZO3ZYe9OZSddw4jjpPPWbyZl7JUzsmPmzLt0U7xWGa3OODHzLJh2Efc4pj8LWacaX3vp0NpMv2QfHpVvHCmT3h-v58V11-_XF98r65-fru8-HxVWc7IVHEwzkiJQqjWNTUCk4IrR3JnYLHpmhahqwFMB4LmoGUSWwVKoUNF6vqsuFyxXTA7vY9-MPGgg_F6CYS40SbmLnvU2BIhrbASmjw04dqu7RrlGOfSylaSzPq0svZzO2Bn8zByz0-gTzOj3-pNuNUElADZ8Ex4d0-I4WbGNOnBJ4t9b0YMc9JUNQxAikX69h_pLswxD29R1VxISo8quqpsDClFdA-_IaCPrtGra3R2jV5co-9y0ZvHfTyU_PFIFtSrIOXUuMH49-3_YH8DgDTRUA</recordid><startdate>20240323</startdate><enddate>20240323</enddate><creator>Li, Shuo</creator><creator>Khan, Sami Ullah</creator><creator>Riaz, Muhammad Bilal</creator><creator>AlQahtani, Salman A.</creator><creator>Alamri, Atif M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240323</creationdate><title>Numerical simulation of a fractional stochastic delay differential equations using spectral scheme: a comprehensive stability analysis</title><author>Li, Shuo ; Khan, Sami Ullah ; Riaz, Muhammad Bilal ; AlQahtani, Salman A. ; Alamri, Atif M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-50afa88e669bf73e048659f10520ce7d7be0d300ad062052c48eb9099efe9133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/705/1041</topic><topic>639/705/1042</topic><topic>Biology</topic><topic>Calculus</topic><topic>Differential equations</topic><topic>Engineering</topic><topic>Fractional stochastic delay differential equations</topic><topic>Humanities and Social Sciences</topic><topic>Information science</topic><topic>Legendre–Gauss–Lobatto nodes</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>multidisciplinary</topic><topic>Partial differential equations</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectral method</topic><topic>Stability analysis</topic><topic>Stochastic models</topic><topic>Stochasticity</topic><topic>Timing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shuo</creatorcontrib><creatorcontrib>Khan, Sami Ullah</creatorcontrib><creatorcontrib>Riaz, Muhammad Bilal</creatorcontrib><creatorcontrib>AlQahtani, Salman A.</creatorcontrib><creatorcontrib>Alamri, Atif M.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shuo</au><au>Khan, Sami Ullah</au><au>Riaz, Muhammad Bilal</au><au>AlQahtani, Salman A.</au><au>Alamri, Atif M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of a fractional stochastic delay differential equations using spectral scheme: a comprehensive stability analysis</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-03-23</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>6930</spage><epage>6930</epage><pages>6930-6930</pages><artnum>6930</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The fractional stochastic delay differential equation (FSDDE) is a powerful mathematical tool for modeling complex systems that exhibit both fractional order dynamics and stochasticity with time delays. The purpose of this study is to explore the stability analysis of a system of FSDDEs. Our study emphasizes the interaction between fractional calculus, stochasticity, and time delays in understanding the stability of such systems. Analyzing the moments of the system’s solutions, we investigate stochasticity’s influence on FSDDS. The article provides practical insight into solving FSDDS efficiently using various numerical techniques. Additionally, this research focuses both on asymptotic as well as Lyapunov stability of FSDDS. The local stability conditions are clearly presented and also the effects of a fractional orders with delay on the stability properties are examine. Through a comprehensive test of a stability criteria, practical examples and numerical simulations we demonstrate the complexity and challenges concern with the analyzing FSDDEs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38521792</pmid><doi>10.1038/s41598-024-56944-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2024-03, Vol.14 (1), p.6930-6930, Article 6930
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_eb168c6c8079416fbdbd79f4558c8b81
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/705/1041
639/705/1042
Biology
Calculus
Differential equations
Engineering
Fractional stochastic delay differential equations
Humanities and Social Sciences
Information science
Legendre–Gauss–Lobatto nodes
Mathematical models
Mathematics
multidisciplinary
Partial differential equations
Science
Science (multidisciplinary)
Spectral method
Stability analysis
Stochastic models
Stochasticity
Timing
title Numerical simulation of a fractional stochastic delay differential equations using spectral scheme: a comprehensive stability analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20a%20fractional%20stochastic%20delay%20differential%20equations%20using%20spectral%20scheme:%20a%20comprehensive%20stability%20analysis&rft.jtitle=Scientific%20reports&rft.au=Li,%20Shuo&rft.date=2024-03-23&rft.volume=14&rft.issue=1&rft.spage=6930&rft.epage=6930&rft.pages=6930-6930&rft.artnum=6930&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-56944-z&rft_dat=%3Cproquest_doaj_%3E2974008675%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-50afa88e669bf73e048659f10520ce7d7be0d300ad062052c48eb9099efe9133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2973568225&rft_id=info:pmid/38521792&rfr_iscdi=true