Loading…

Retrieval of Water Quality from UAV-Borne Hyperspectral Imagery: A Comparative Study of Machine Learning Algorithms

The rapidly increasing world population and human activities accelerate the crisis of the limited freshwater resources. Water quality must be monitored for the sustainability of freshwater resources. Unmanned aerial vehicle (UAV)-borne hyperspectral data can capture fine features of water bodies, wh...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2021-10, Vol.13 (19), p.3928
Main Authors: Lu, Qikai, Si, Wei, Wei, Lifei, Li, Zhongqiang, Xia, Zhihong, Ye, Song, Xia, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-eb54bfef3d0a12959ed09a9d027e69e689bc09e5d4284bfd6c670fc3ecf43dc93
cites cdi_FETCH-LOGICAL-c361t-eb54bfef3d0a12959ed09a9d027e69e689bc09e5d4284bfd6c670fc3ecf43dc93
container_end_page
container_issue 19
container_start_page 3928
container_title Remote sensing (Basel, Switzerland)
container_volume 13
creator Lu, Qikai
Si, Wei
Wei, Lifei
Li, Zhongqiang
Xia, Zhihong
Ye, Song
Xia, Yu
description The rapidly increasing world population and human activities accelerate the crisis of the limited freshwater resources. Water quality must be monitored for the sustainability of freshwater resources. Unmanned aerial vehicle (UAV)-borne hyperspectral data can capture fine features of water bodies, which have been widely used for monitoring water quality. In this study, nine machine learning algorithms are systematically evaluated for the inversion of water quality parameters including chlorophyll-a (Chl-a) and suspended solids (SS) with UAV-borne hyperspectral data. In comparing the experimental results of the machine learning model on the water quality parameters, we can observe that the prediction performance of the Catboost regression (CBR) model is the best. However, the prediction performances of the Multi-layer Perceptron regression (MLPR) and Elastic net (EN) models are very unsatisfactory, indicating that the MLPR and EN models are not suitable for the inversion of water quality parameters. In addition, the water quality distribution map is generated, which can be used to identify polluted areas of water bodies.
doi_str_mv 10.3390/rs13193928
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_eb405d7dd8f941ec941daea2ed1e65e6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_eb405d7dd8f941ec941daea2ed1e65e6</doaj_id><sourcerecordid>2581003743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-eb54bfef3d0a12959ed09a9d027e69e689bc09e5d4284bfd6c670fc3ecf43dc93</originalsourceid><addsrcrecordid>eNpNkUtvFDEMx0cIJKrSC58gEjekgTzmFW7LCuhKWyEehWPkTZxtVjObwclWmm9PyqKCD7Zl_fy3ZVfVS8HfKKX5W0pCCa20HJ5UF5L3sm6klk__y59XVykdeDFVSN5cVOkrZgp4DyOLnv2EjMS-nGAMeWGe4sRuVz_q95GOyK6XGSnNaDMVejPBHml5x1ZsHacZCHK4R_Ytn9zyIHUD9i6Uri0CHcNxz1bjPlLId1N6UT3zMCa8-hsvq9uPH76vr-vt50-b9WpbW9WJXOOubXYevXIchNStRsc1aMdlj53GbtA7yzW2rpFDAV1nu557q9D6Rjmr1WW1Oeu6CAczU5iAFhMhmD-FSHsDlIMd0eCu4a3rnRu8bgTa4hwgSHQCuxa7ovXqrDVT_HXClM0hnuhY1jeyHUQ5aN-oQr0-U5ZiSoT-carg5uFH5t-P1G9DlYU0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581003743</pqid></control><display><type>article</type><title>Retrieval of Water Quality from UAV-Borne Hyperspectral Imagery: A Comparative Study of Machine Learning Algorithms</title><source>Publicly Available Content Database</source><creator>Lu, Qikai ; Si, Wei ; Wei, Lifei ; Li, Zhongqiang ; Xia, Zhihong ; Ye, Song ; Xia, Yu</creator><creatorcontrib>Lu, Qikai ; Si, Wei ; Wei, Lifei ; Li, Zhongqiang ; Xia, Zhihong ; Ye, Song ; Xia, Yu</creatorcontrib><description>The rapidly increasing world population and human activities accelerate the crisis of the limited freshwater resources. Water quality must be monitored for the sustainability of freshwater resources. Unmanned aerial vehicle (UAV)-borne hyperspectral data can capture fine features of water bodies, which have been widely used for monitoring water quality. In this study, nine machine learning algorithms are systematically evaluated for the inversion of water quality parameters including chlorophyll-a (Chl-a) and suspended solids (SS) with UAV-borne hyperspectral data. In comparing the experimental results of the machine learning model on the water quality parameters, we can observe that the prediction performance of the Catboost regression (CBR) model is the best. However, the prediction performances of the Multi-layer Perceptron regression (MLPR) and Elastic net (EN) models are very unsatisfactory, indicating that the MLPR and EN models are not suitable for the inversion of water quality parameters. In addition, the water quality distribution map is generated, which can be used to identify polluted areas of water bodies.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs13193928</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Chemical oxygen demand ; Chlorophyll ; Comparative studies ; Data collection ; Eutrophication ; Freshwater resources ; Groundwater ; Heavy metals ; Hyperspectral imaging ; Laboratories ; Learning algorithms ; Machine learning ; Multilayers ; Neural networks ; Parameters ; Performance prediction ; Pollution monitoring ; Regression analysis ; Regression models ; Remote sensing ; Solid suspensions ; Support vector machines ; Suspended solids ; UAV-borne hyperspectral data ; Unmanned aerial vehicles ; Water monitoring ; Water pollution ; Water quality ; water quality mapping ; water quality parameters inversion ; Water temperature ; World population</subject><ispartof>Remote sensing (Basel, Switzerland), 2021-10, Vol.13 (19), p.3928</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-eb54bfef3d0a12959ed09a9d027e69e689bc09e5d4284bfd6c670fc3ecf43dc93</citedby><cites>FETCH-LOGICAL-c361t-eb54bfef3d0a12959ed09a9d027e69e689bc09e5d4284bfd6c670fc3ecf43dc93</cites><orcidid>0000-0002-9879-3648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2581003743/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2581003743?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Lu, Qikai</creatorcontrib><creatorcontrib>Si, Wei</creatorcontrib><creatorcontrib>Wei, Lifei</creatorcontrib><creatorcontrib>Li, Zhongqiang</creatorcontrib><creatorcontrib>Xia, Zhihong</creatorcontrib><creatorcontrib>Ye, Song</creatorcontrib><creatorcontrib>Xia, Yu</creatorcontrib><title>Retrieval of Water Quality from UAV-Borne Hyperspectral Imagery: A Comparative Study of Machine Learning Algorithms</title><title>Remote sensing (Basel, Switzerland)</title><description>The rapidly increasing world population and human activities accelerate the crisis of the limited freshwater resources. Water quality must be monitored for the sustainability of freshwater resources. Unmanned aerial vehicle (UAV)-borne hyperspectral data can capture fine features of water bodies, which have been widely used for monitoring water quality. In this study, nine machine learning algorithms are systematically evaluated for the inversion of water quality parameters including chlorophyll-a (Chl-a) and suspended solids (SS) with UAV-borne hyperspectral data. In comparing the experimental results of the machine learning model on the water quality parameters, we can observe that the prediction performance of the Catboost regression (CBR) model is the best. However, the prediction performances of the Multi-layer Perceptron regression (MLPR) and Elastic net (EN) models are very unsatisfactory, indicating that the MLPR and EN models are not suitable for the inversion of water quality parameters. In addition, the water quality distribution map is generated, which can be used to identify polluted areas of water bodies.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Chemical oxygen demand</subject><subject>Chlorophyll</subject><subject>Comparative studies</subject><subject>Data collection</subject><subject>Eutrophication</subject><subject>Freshwater resources</subject><subject>Groundwater</subject><subject>Heavy metals</subject><subject>Hyperspectral imaging</subject><subject>Laboratories</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Performance prediction</subject><subject>Pollution monitoring</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Remote sensing</subject><subject>Solid suspensions</subject><subject>Support vector machines</subject><subject>Suspended solids</subject><subject>UAV-borne hyperspectral data</subject><subject>Unmanned aerial vehicles</subject><subject>Water monitoring</subject><subject>Water pollution</subject><subject>Water quality</subject><subject>water quality mapping</subject><subject>water quality parameters inversion</subject><subject>Water temperature</subject><subject>World population</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtvFDEMx0cIJKrSC58gEjekgTzmFW7LCuhKWyEehWPkTZxtVjObwclWmm9PyqKCD7Zl_fy3ZVfVS8HfKKX5W0pCCa20HJ5UF5L3sm6klk__y59XVykdeDFVSN5cVOkrZgp4DyOLnv2EjMS-nGAMeWGe4sRuVz_q95GOyK6XGSnNaDMVejPBHml5x1ZsHacZCHK4R_Ytn9zyIHUD9i6Uri0CHcNxz1bjPlLId1N6UT3zMCa8-hsvq9uPH76vr-vt50-b9WpbW9WJXOOubXYevXIchNStRsc1aMdlj53GbtA7yzW2rpFDAV1nu557q9D6Rjmr1WW1Oeu6CAczU5iAFhMhmD-FSHsDlIMd0eCu4a3rnRu8bgTa4hwgSHQCuxa7ovXqrDVT_HXClM0hnuhY1jeyHUQ5aN-oQr0-U5ZiSoT-carg5uFH5t-P1G9DlYU0</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Lu, Qikai</creator><creator>Si, Wei</creator><creator>Wei, Lifei</creator><creator>Li, Zhongqiang</creator><creator>Xia, Zhihong</creator><creator>Ye, Song</creator><creator>Xia, Yu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9879-3648</orcidid></search><sort><creationdate>20211001</creationdate><title>Retrieval of Water Quality from UAV-Borne Hyperspectral Imagery: A Comparative Study of Machine Learning Algorithms</title><author>Lu, Qikai ; Si, Wei ; Wei, Lifei ; Li, Zhongqiang ; Xia, Zhihong ; Ye, Song ; Xia, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-eb54bfef3d0a12959ed09a9d027e69e689bc09e5d4284bfd6c670fc3ecf43dc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Chemical oxygen demand</topic><topic>Chlorophyll</topic><topic>Comparative studies</topic><topic>Data collection</topic><topic>Eutrophication</topic><topic>Freshwater resources</topic><topic>Groundwater</topic><topic>Heavy metals</topic><topic>Hyperspectral imaging</topic><topic>Laboratories</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Performance prediction</topic><topic>Pollution monitoring</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Remote sensing</topic><topic>Solid suspensions</topic><topic>Support vector machines</topic><topic>Suspended solids</topic><topic>UAV-borne hyperspectral data</topic><topic>Unmanned aerial vehicles</topic><topic>Water monitoring</topic><topic>Water pollution</topic><topic>Water quality</topic><topic>water quality mapping</topic><topic>water quality parameters inversion</topic><topic>Water temperature</topic><topic>World population</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Qikai</creatorcontrib><creatorcontrib>Si, Wei</creatorcontrib><creatorcontrib>Wei, Lifei</creatorcontrib><creatorcontrib>Li, Zhongqiang</creatorcontrib><creatorcontrib>Xia, Zhihong</creatorcontrib><creatorcontrib>Ye, Song</creatorcontrib><creatorcontrib>Xia, Yu</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Qikai</au><au>Si, Wei</au><au>Wei, Lifei</au><au>Li, Zhongqiang</au><au>Xia, Zhihong</au><au>Ye, Song</au><au>Xia, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retrieval of Water Quality from UAV-Borne Hyperspectral Imagery: A Comparative Study of Machine Learning Algorithms</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>13</volume><issue>19</issue><spage>3928</spage><pages>3928-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>The rapidly increasing world population and human activities accelerate the crisis of the limited freshwater resources. Water quality must be monitored for the sustainability of freshwater resources. Unmanned aerial vehicle (UAV)-borne hyperspectral data can capture fine features of water bodies, which have been widely used for monitoring water quality. In this study, nine machine learning algorithms are systematically evaluated for the inversion of water quality parameters including chlorophyll-a (Chl-a) and suspended solids (SS) with UAV-borne hyperspectral data. In comparing the experimental results of the machine learning model on the water quality parameters, we can observe that the prediction performance of the Catboost regression (CBR) model is the best. However, the prediction performances of the Multi-layer Perceptron regression (MLPR) and Elastic net (EN) models are very unsatisfactory, indicating that the MLPR and EN models are not suitable for the inversion of water quality parameters. In addition, the water quality distribution map is generated, which can be used to identify polluted areas of water bodies.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs13193928</doi><orcidid>https://orcid.org/0000-0002-9879-3648</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2021-10, Vol.13 (19), p.3928
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_eb405d7dd8f941ec941daea2ed1e65e6
source Publicly Available Content Database
subjects Algorithms
Artificial intelligence
Chemical oxygen demand
Chlorophyll
Comparative studies
Data collection
Eutrophication
Freshwater resources
Groundwater
Heavy metals
Hyperspectral imaging
Laboratories
Learning algorithms
Machine learning
Multilayers
Neural networks
Parameters
Performance prediction
Pollution monitoring
Regression analysis
Regression models
Remote sensing
Solid suspensions
Support vector machines
Suspended solids
UAV-borne hyperspectral data
Unmanned aerial vehicles
Water monitoring
Water pollution
Water quality
water quality mapping
water quality parameters inversion
Water temperature
World population
title Retrieval of Water Quality from UAV-Borne Hyperspectral Imagery: A Comparative Study of Machine Learning Algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retrieval%20of%20Water%20Quality%20from%20UAV-Borne%20Hyperspectral%20Imagery:%20A%20Comparative%20Study%20of%20Machine%20Learning%20Algorithms&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Lu,%20Qikai&rft.date=2021-10-01&rft.volume=13&rft.issue=19&rft.spage=3928&rft.pages=3928-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs13193928&rft_dat=%3Cproquest_doaj_%3E2581003743%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-eb54bfef3d0a12959ed09a9d027e69e689bc09e5d4284bfd6c670fc3ecf43dc93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2581003743&rft_id=info:pmid/&rfr_iscdi=true