Loading…
Retrieval of Water Quality from UAV-Borne Hyperspectral Imagery: A Comparative Study of Machine Learning Algorithms
The rapidly increasing world population and human activities accelerate the crisis of the limited freshwater resources. Water quality must be monitored for the sustainability of freshwater resources. Unmanned aerial vehicle (UAV)-borne hyperspectral data can capture fine features of water bodies, wh...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-10, Vol.13 (19), p.3928 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-eb54bfef3d0a12959ed09a9d027e69e689bc09e5d4284bfd6c670fc3ecf43dc93 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-eb54bfef3d0a12959ed09a9d027e69e689bc09e5d4284bfd6c670fc3ecf43dc93 |
container_end_page | |
container_issue | 19 |
container_start_page | 3928 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 13 |
creator | Lu, Qikai Si, Wei Wei, Lifei Li, Zhongqiang Xia, Zhihong Ye, Song Xia, Yu |
description | The rapidly increasing world population and human activities accelerate the crisis of the limited freshwater resources. Water quality must be monitored for the sustainability of freshwater resources. Unmanned aerial vehicle (UAV)-borne hyperspectral data can capture fine features of water bodies, which have been widely used for monitoring water quality. In this study, nine machine learning algorithms are systematically evaluated for the inversion of water quality parameters including chlorophyll-a (Chl-a) and suspended solids (SS) with UAV-borne hyperspectral data. In comparing the experimental results of the machine learning model on the water quality parameters, we can observe that the prediction performance of the Catboost regression (CBR) model is the best. However, the prediction performances of the Multi-layer Perceptron regression (MLPR) and Elastic net (EN) models are very unsatisfactory, indicating that the MLPR and EN models are not suitable for the inversion of water quality parameters. In addition, the water quality distribution map is generated, which can be used to identify polluted areas of water bodies. |
doi_str_mv | 10.3390/rs13193928 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_eb405d7dd8f941ec941daea2ed1e65e6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_eb405d7dd8f941ec941daea2ed1e65e6</doaj_id><sourcerecordid>2581003743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-eb54bfef3d0a12959ed09a9d027e69e689bc09e5d4284bfd6c670fc3ecf43dc93</originalsourceid><addsrcrecordid>eNpNkUtvFDEMx0cIJKrSC58gEjekgTzmFW7LCuhKWyEehWPkTZxtVjObwclWmm9PyqKCD7Zl_fy3ZVfVS8HfKKX5W0pCCa20HJ5UF5L3sm6klk__y59XVykdeDFVSN5cVOkrZgp4DyOLnv2EjMS-nGAMeWGe4sRuVz_q95GOyK6XGSnNaDMVejPBHml5x1ZsHacZCHK4R_Ytn9zyIHUD9i6Uri0CHcNxz1bjPlLId1N6UT3zMCa8-hsvq9uPH76vr-vt50-b9WpbW9WJXOOubXYevXIchNStRsc1aMdlj53GbtA7yzW2rpFDAV1nu557q9D6Rjmr1WW1Oeu6CAczU5iAFhMhmD-FSHsDlIMd0eCu4a3rnRu8bgTa4hwgSHQCuxa7ovXqrDVT_HXClM0hnuhY1jeyHUQ5aN-oQr0-U5ZiSoT-carg5uFH5t-P1G9DlYU0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581003743</pqid></control><display><type>article</type><title>Retrieval of Water Quality from UAV-Borne Hyperspectral Imagery: A Comparative Study of Machine Learning Algorithms</title><source>Publicly Available Content Database</source><creator>Lu, Qikai ; Si, Wei ; Wei, Lifei ; Li, Zhongqiang ; Xia, Zhihong ; Ye, Song ; Xia, Yu</creator><creatorcontrib>Lu, Qikai ; Si, Wei ; Wei, Lifei ; Li, Zhongqiang ; Xia, Zhihong ; Ye, Song ; Xia, Yu</creatorcontrib><description>The rapidly increasing world population and human activities accelerate the crisis of the limited freshwater resources. Water quality must be monitored for the sustainability of freshwater resources. Unmanned aerial vehicle (UAV)-borne hyperspectral data can capture fine features of water bodies, which have been widely used for monitoring water quality. In this study, nine machine learning algorithms are systematically evaluated for the inversion of water quality parameters including chlorophyll-a (Chl-a) and suspended solids (SS) with UAV-borne hyperspectral data. In comparing the experimental results of the machine learning model on the water quality parameters, we can observe that the prediction performance of the Catboost regression (CBR) model is the best. However, the prediction performances of the Multi-layer Perceptron regression (MLPR) and Elastic net (EN) models are very unsatisfactory, indicating that the MLPR and EN models are not suitable for the inversion of water quality parameters. In addition, the water quality distribution map is generated, which can be used to identify polluted areas of water bodies.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs13193928</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Chemical oxygen demand ; Chlorophyll ; Comparative studies ; Data collection ; Eutrophication ; Freshwater resources ; Groundwater ; Heavy metals ; Hyperspectral imaging ; Laboratories ; Learning algorithms ; Machine learning ; Multilayers ; Neural networks ; Parameters ; Performance prediction ; Pollution monitoring ; Regression analysis ; Regression models ; Remote sensing ; Solid suspensions ; Support vector machines ; Suspended solids ; UAV-borne hyperspectral data ; Unmanned aerial vehicles ; Water monitoring ; Water pollution ; Water quality ; water quality mapping ; water quality parameters inversion ; Water temperature ; World population</subject><ispartof>Remote sensing (Basel, Switzerland), 2021-10, Vol.13 (19), p.3928</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-eb54bfef3d0a12959ed09a9d027e69e689bc09e5d4284bfd6c670fc3ecf43dc93</citedby><cites>FETCH-LOGICAL-c361t-eb54bfef3d0a12959ed09a9d027e69e689bc09e5d4284bfd6c670fc3ecf43dc93</cites><orcidid>0000-0002-9879-3648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2581003743/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2581003743?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Lu, Qikai</creatorcontrib><creatorcontrib>Si, Wei</creatorcontrib><creatorcontrib>Wei, Lifei</creatorcontrib><creatorcontrib>Li, Zhongqiang</creatorcontrib><creatorcontrib>Xia, Zhihong</creatorcontrib><creatorcontrib>Ye, Song</creatorcontrib><creatorcontrib>Xia, Yu</creatorcontrib><title>Retrieval of Water Quality from UAV-Borne Hyperspectral Imagery: A Comparative Study of Machine Learning Algorithms</title><title>Remote sensing (Basel, Switzerland)</title><description>The rapidly increasing world population and human activities accelerate the crisis of the limited freshwater resources. Water quality must be monitored for the sustainability of freshwater resources. Unmanned aerial vehicle (UAV)-borne hyperspectral data can capture fine features of water bodies, which have been widely used for monitoring water quality. In this study, nine machine learning algorithms are systematically evaluated for the inversion of water quality parameters including chlorophyll-a (Chl-a) and suspended solids (SS) with UAV-borne hyperspectral data. In comparing the experimental results of the machine learning model on the water quality parameters, we can observe that the prediction performance of the Catboost regression (CBR) model is the best. However, the prediction performances of the Multi-layer Perceptron regression (MLPR) and Elastic net (EN) models are very unsatisfactory, indicating that the MLPR and EN models are not suitable for the inversion of water quality parameters. In addition, the water quality distribution map is generated, which can be used to identify polluted areas of water bodies.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Chemical oxygen demand</subject><subject>Chlorophyll</subject><subject>Comparative studies</subject><subject>Data collection</subject><subject>Eutrophication</subject><subject>Freshwater resources</subject><subject>Groundwater</subject><subject>Heavy metals</subject><subject>Hyperspectral imaging</subject><subject>Laboratories</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Performance prediction</subject><subject>Pollution monitoring</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Remote sensing</subject><subject>Solid suspensions</subject><subject>Support vector machines</subject><subject>Suspended solids</subject><subject>UAV-borne hyperspectral data</subject><subject>Unmanned aerial vehicles</subject><subject>Water monitoring</subject><subject>Water pollution</subject><subject>Water quality</subject><subject>water quality mapping</subject><subject>water quality parameters inversion</subject><subject>Water temperature</subject><subject>World population</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtvFDEMx0cIJKrSC58gEjekgTzmFW7LCuhKWyEehWPkTZxtVjObwclWmm9PyqKCD7Zl_fy3ZVfVS8HfKKX5W0pCCa20HJ5UF5L3sm6klk__y59XVykdeDFVSN5cVOkrZgp4DyOLnv2EjMS-nGAMeWGe4sRuVz_q95GOyK6XGSnNaDMVejPBHml5x1ZsHacZCHK4R_Ytn9zyIHUD9i6Uri0CHcNxz1bjPlLId1N6UT3zMCa8-hsvq9uPH76vr-vt50-b9WpbW9WJXOOubXYevXIchNStRsc1aMdlj53GbtA7yzW2rpFDAV1nu557q9D6Rjmr1WW1Oeu6CAczU5iAFhMhmD-FSHsDlIMd0eCu4a3rnRu8bgTa4hwgSHQCuxa7ovXqrDVT_HXClM0hnuhY1jeyHUQ5aN-oQr0-U5ZiSoT-carg5uFH5t-P1G9DlYU0</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Lu, Qikai</creator><creator>Si, Wei</creator><creator>Wei, Lifei</creator><creator>Li, Zhongqiang</creator><creator>Xia, Zhihong</creator><creator>Ye, Song</creator><creator>Xia, Yu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9879-3648</orcidid></search><sort><creationdate>20211001</creationdate><title>Retrieval of Water Quality from UAV-Borne Hyperspectral Imagery: A Comparative Study of Machine Learning Algorithms</title><author>Lu, Qikai ; Si, Wei ; Wei, Lifei ; Li, Zhongqiang ; Xia, Zhihong ; Ye, Song ; Xia, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-eb54bfef3d0a12959ed09a9d027e69e689bc09e5d4284bfd6c670fc3ecf43dc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Chemical oxygen demand</topic><topic>Chlorophyll</topic><topic>Comparative studies</topic><topic>Data collection</topic><topic>Eutrophication</topic><topic>Freshwater resources</topic><topic>Groundwater</topic><topic>Heavy metals</topic><topic>Hyperspectral imaging</topic><topic>Laboratories</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Performance prediction</topic><topic>Pollution monitoring</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Remote sensing</topic><topic>Solid suspensions</topic><topic>Support vector machines</topic><topic>Suspended solids</topic><topic>UAV-borne hyperspectral data</topic><topic>Unmanned aerial vehicles</topic><topic>Water monitoring</topic><topic>Water pollution</topic><topic>Water quality</topic><topic>water quality mapping</topic><topic>water quality parameters inversion</topic><topic>Water temperature</topic><topic>World population</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Qikai</creatorcontrib><creatorcontrib>Si, Wei</creatorcontrib><creatorcontrib>Wei, Lifei</creatorcontrib><creatorcontrib>Li, Zhongqiang</creatorcontrib><creatorcontrib>Xia, Zhihong</creatorcontrib><creatorcontrib>Ye, Song</creatorcontrib><creatorcontrib>Xia, Yu</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Qikai</au><au>Si, Wei</au><au>Wei, Lifei</au><au>Li, Zhongqiang</au><au>Xia, Zhihong</au><au>Ye, Song</au><au>Xia, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retrieval of Water Quality from UAV-Borne Hyperspectral Imagery: A Comparative Study of Machine Learning Algorithms</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>13</volume><issue>19</issue><spage>3928</spage><pages>3928-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>The rapidly increasing world population and human activities accelerate the crisis of the limited freshwater resources. Water quality must be monitored for the sustainability of freshwater resources. Unmanned aerial vehicle (UAV)-borne hyperspectral data can capture fine features of water bodies, which have been widely used for monitoring water quality. In this study, nine machine learning algorithms are systematically evaluated for the inversion of water quality parameters including chlorophyll-a (Chl-a) and suspended solids (SS) with UAV-borne hyperspectral data. In comparing the experimental results of the machine learning model on the water quality parameters, we can observe that the prediction performance of the Catboost regression (CBR) model is the best. However, the prediction performances of the Multi-layer Perceptron regression (MLPR) and Elastic net (EN) models are very unsatisfactory, indicating that the MLPR and EN models are not suitable for the inversion of water quality parameters. In addition, the water quality distribution map is generated, which can be used to identify polluted areas of water bodies.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs13193928</doi><orcidid>https://orcid.org/0000-0002-9879-3648</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2021-10, Vol.13 (19), p.3928 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_eb405d7dd8f941ec941daea2ed1e65e6 |
source | Publicly Available Content Database |
subjects | Algorithms Artificial intelligence Chemical oxygen demand Chlorophyll Comparative studies Data collection Eutrophication Freshwater resources Groundwater Heavy metals Hyperspectral imaging Laboratories Learning algorithms Machine learning Multilayers Neural networks Parameters Performance prediction Pollution monitoring Regression analysis Regression models Remote sensing Solid suspensions Support vector machines Suspended solids UAV-borne hyperspectral data Unmanned aerial vehicles Water monitoring Water pollution Water quality water quality mapping water quality parameters inversion Water temperature World population |
title | Retrieval of Water Quality from UAV-Borne Hyperspectral Imagery: A Comparative Study of Machine Learning Algorithms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retrieval%20of%20Water%20Quality%20from%20UAV-Borne%20Hyperspectral%20Imagery:%20A%20Comparative%20Study%20of%20Machine%20Learning%20Algorithms&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Lu,%20Qikai&rft.date=2021-10-01&rft.volume=13&rft.issue=19&rft.spage=3928&rft.pages=3928-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs13193928&rft_dat=%3Cproquest_doaj_%3E2581003743%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-eb54bfef3d0a12959ed09a9d027e69e689bc09e5d4284bfd6c670fc3ecf43dc93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2581003743&rft_id=info:pmid/&rfr_iscdi=true |