Loading…
A Kinematic Information Acquisition Model That Uses Digital Signals from an Inertial and Magnetic Motion Capture System
This paper presents a model that enables the transformation of digital signals generated by an inertial and magnetic motion capture system into kinematic information. First, the operation and data generated by the used inertial and magnetic system are described. Subsequently, the five stages of the...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2022-06, Vol.22 (13), p.4898 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c508t-d5aac5f4bd9c1c4b79e345881e4927e8470ed4f338393920b03d14c1031847d13 |
---|---|
cites | cdi_FETCH-LOGICAL-c508t-d5aac5f4bd9c1c4b79e345881e4927e8470ed4f338393920b03d14c1031847d13 |
container_end_page | |
container_issue | 13 |
container_start_page | 4898 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 22 |
creator | Alarcón-Aldana, Andrea Catherine Callejas-Cuervo, Mauro Bastos-Filho, Teodiano Bó, Antônio Padilha Lanari |
description | This paper presents a model that enables the transformation of digital signals generated by an inertial and magnetic motion capture system into kinematic information. First, the operation and data generated by the used inertial and magnetic system are described. Subsequently, the five stages of the proposed model are described, concluding with its implementation in a virtual environment to display the kinematic information. Finally, the applied tests are presented to evaluate the performance of the model through the execution of four exercises on the upper limb: flexion and extension of the elbow, and pronation and supination of the forearm. The results show a mean squared error of 3.82° in elbow flexion-extension movements and 3.46° in forearm pronation-supination movements. The results were obtained by comparing the inertial and magnetic system versus an optical motion capture system, allowing for the identification of the usability and functionality of the proposed model. |
doi_str_mv | 10.3390/s22134898 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_eb58486da63e49d884a1c91282bb283e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723417109</galeid><doaj_id>oai_doaj_org_article_eb58486da63e49d884a1c91282bb283e</doaj_id><sourcerecordid>A723417109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-d5aac5f4bd9c1c4b79e345881e4927e8470ed4f338393920b03d14c1031847d13</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEoqVw4A8gS1zgsMVfSewL0mopsKIrDm3PlmNPUq8Se2snoP77Ortl1SIfPJp557Ffe4riPcHnjEn8JVFKGBdSvChOCad8ISjFL5_EJ8WblLYYU8aYeF2csFJgwSQ7Lf4u0S_nYdCjM2jt2xDnMHi0NHeTS24fb4KFHl3f6hHdJEjom-vcqHt05Tqv-4TaGAakfe6HOLpc0N6ije48zNRN2ENWejdOEdDVfRpheFu8anMrvHvcz4qb7xfXq5-Ly98_1qvl5cKUWIwLW2ptypY3VhpieFNLYLwUggCXtAbBawyWt9lVdiMpbjCzhBuCGck1S9hZsT5wbdBbtYtu0PFeBe3UPhFip3S-s-lBQVMKLiqrK5bpVgiuiZGECto0VDDIrK8H1m5qBrAG_Bh1_wz6vOLdrerCHyVpJUvGM-DTIyCGuwnSqAaXDPS99hCmpGgl6pryEpdZ-vE_6TZMcX7tWVWR7JfTrDo_qDqdDbj8fflck5eFwZngoXU5v6wp46QmWOaGz4cGE0NKEdrj7QlW8yyp4yxl7Yendo_Kf8PDHgDEdcL9</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686183942</pqid></control><display><type>article</type><title>A Kinematic Information Acquisition Model That Uses Digital Signals from an Inertial and Magnetic Motion Capture System</title><source>Open Access: PubMed Central</source><source>ProQuest - Publicly Available Content Database</source><creator>Alarcón-Aldana, Andrea Catherine ; Callejas-Cuervo, Mauro ; Bastos-Filho, Teodiano ; Bó, Antônio Padilha Lanari</creator><creatorcontrib>Alarcón-Aldana, Andrea Catherine ; Callejas-Cuervo, Mauro ; Bastos-Filho, Teodiano ; Bó, Antônio Padilha Lanari</creatorcontrib><description>This paper presents a model that enables the transformation of digital signals generated by an inertial and magnetic motion capture system into kinematic information. First, the operation and data generated by the used inertial and magnetic system are described. Subsequently, the five stages of the proposed model are described, concluding with its implementation in a virtual environment to display the kinematic information. Finally, the applied tests are presented to evaluate the performance of the model through the execution of four exercises on the upper limb: flexion and extension of the elbow, and pronation and supination of the forearm. The results show a mean squared error of 3.82° in elbow flexion-extension movements and 3.46° in forearm pronation-supination movements. The results were obtained by comparing the inertial and magnetic system versus an optical motion capture system, allowing for the identification of the usability and functionality of the proposed model.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22134898</identifier><identifier>PMID: 35808393</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>articular amplitude ; Biomechanical Phenomena ; Biomechanics ; Data processing ; Elbow Joint ; Forearm ; inertial magnetic sensors ; Kinematics ; Magnetic Phenomena ; Methods ; Motion capture ; Pronation ; Range of Motion, Articular ; Rehabilitation ; Sensors ; Signal processing ; Supination ; upper limb ; Virtual environments ; Virtual worlds</subject><ispartof>Sensors (Basel, Switzerland), 2022-06, Vol.22 (13), p.4898</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-d5aac5f4bd9c1c4b79e345881e4927e8470ed4f338393920b03d14c1031847d13</citedby><cites>FETCH-LOGICAL-c508t-d5aac5f4bd9c1c4b79e345881e4927e8470ed4f338393920b03d14c1031847d13</cites><orcidid>0000-0001-9894-8737 ; 0000-0002-1983-7375 ; 0000-0002-1185-2773 ; 0000-0001-8229-0512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2686183942/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2686183942?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35808393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alarcón-Aldana, Andrea Catherine</creatorcontrib><creatorcontrib>Callejas-Cuervo, Mauro</creatorcontrib><creatorcontrib>Bastos-Filho, Teodiano</creatorcontrib><creatorcontrib>Bó, Antônio Padilha Lanari</creatorcontrib><title>A Kinematic Information Acquisition Model That Uses Digital Signals from an Inertial and Magnetic Motion Capture System</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>This paper presents a model that enables the transformation of digital signals generated by an inertial and magnetic motion capture system into kinematic information. First, the operation and data generated by the used inertial and magnetic system are described. Subsequently, the five stages of the proposed model are described, concluding with its implementation in a virtual environment to display the kinematic information. Finally, the applied tests are presented to evaluate the performance of the model through the execution of four exercises on the upper limb: flexion and extension of the elbow, and pronation and supination of the forearm. The results show a mean squared error of 3.82° in elbow flexion-extension movements and 3.46° in forearm pronation-supination movements. The results were obtained by comparing the inertial and magnetic system versus an optical motion capture system, allowing for the identification of the usability and functionality of the proposed model.</description><subject>articular amplitude</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Data processing</subject><subject>Elbow Joint</subject><subject>Forearm</subject><subject>inertial magnetic sensors</subject><subject>Kinematics</subject><subject>Magnetic Phenomena</subject><subject>Methods</subject><subject>Motion capture</subject><subject>Pronation</subject><subject>Range of Motion, Articular</subject><subject>Rehabilitation</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Supination</subject><subject>upper limb</subject><subject>Virtual environments</subject><subject>Virtual worlds</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhiMEoqVw4A8gS1zgsMVfSewL0mopsKIrDm3PlmNPUq8Se2snoP77Ortl1SIfPJp557Ffe4riPcHnjEn8JVFKGBdSvChOCad8ISjFL5_EJ8WblLYYU8aYeF2csFJgwSQ7Lf4u0S_nYdCjM2jt2xDnMHi0NHeTS24fb4KFHl3f6hHdJEjom-vcqHt05Tqv-4TaGAakfe6HOLpc0N6ije48zNRN2ENWejdOEdDVfRpheFu8anMrvHvcz4qb7xfXq5-Ly98_1qvl5cKUWIwLW2ptypY3VhpieFNLYLwUggCXtAbBawyWt9lVdiMpbjCzhBuCGck1S9hZsT5wbdBbtYtu0PFeBe3UPhFip3S-s-lBQVMKLiqrK5bpVgiuiZGECto0VDDIrK8H1m5qBrAG_Bh1_wz6vOLdrerCHyVpJUvGM-DTIyCGuwnSqAaXDPS99hCmpGgl6pryEpdZ-vE_6TZMcX7tWVWR7JfTrDo_qDqdDbj8fflck5eFwZngoXU5v6wp46QmWOaGz4cGE0NKEdrj7QlW8yyp4yxl7Yendo_Kf8PDHgDEdcL9</recordid><startdate>20220629</startdate><enddate>20220629</enddate><creator>Alarcón-Aldana, Andrea Catherine</creator><creator>Callejas-Cuervo, Mauro</creator><creator>Bastos-Filho, Teodiano</creator><creator>Bó, Antônio Padilha Lanari</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9894-8737</orcidid><orcidid>https://orcid.org/0000-0002-1983-7375</orcidid><orcidid>https://orcid.org/0000-0002-1185-2773</orcidid><orcidid>https://orcid.org/0000-0001-8229-0512</orcidid></search><sort><creationdate>20220629</creationdate><title>A Kinematic Information Acquisition Model That Uses Digital Signals from an Inertial and Magnetic Motion Capture System</title><author>Alarcón-Aldana, Andrea Catherine ; Callejas-Cuervo, Mauro ; Bastos-Filho, Teodiano ; Bó, Antônio Padilha Lanari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-d5aac5f4bd9c1c4b79e345881e4927e8470ed4f338393920b03d14c1031847d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>articular amplitude</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Data processing</topic><topic>Elbow Joint</topic><topic>Forearm</topic><topic>inertial magnetic sensors</topic><topic>Kinematics</topic><topic>Magnetic Phenomena</topic><topic>Methods</topic><topic>Motion capture</topic><topic>Pronation</topic><topic>Range of Motion, Articular</topic><topic>Rehabilitation</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Supination</topic><topic>upper limb</topic><topic>Virtual environments</topic><topic>Virtual worlds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alarcón-Aldana, Andrea Catherine</creatorcontrib><creatorcontrib>Callejas-Cuervo, Mauro</creatorcontrib><creatorcontrib>Bastos-Filho, Teodiano</creatorcontrib><creatorcontrib>Bó, Antônio Padilha Lanari</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alarcón-Aldana, Andrea Catherine</au><au>Callejas-Cuervo, Mauro</au><au>Bastos-Filho, Teodiano</au><au>Bó, Antônio Padilha Lanari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Kinematic Information Acquisition Model That Uses Digital Signals from an Inertial and Magnetic Motion Capture System</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2022-06-29</date><risdate>2022</risdate><volume>22</volume><issue>13</issue><spage>4898</spage><pages>4898-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>This paper presents a model that enables the transformation of digital signals generated by an inertial and magnetic motion capture system into kinematic information. First, the operation and data generated by the used inertial and magnetic system are described. Subsequently, the five stages of the proposed model are described, concluding with its implementation in a virtual environment to display the kinematic information. Finally, the applied tests are presented to evaluate the performance of the model through the execution of four exercises on the upper limb: flexion and extension of the elbow, and pronation and supination of the forearm. The results show a mean squared error of 3.82° in elbow flexion-extension movements and 3.46° in forearm pronation-supination movements. The results were obtained by comparing the inertial and magnetic system versus an optical motion capture system, allowing for the identification of the usability and functionality of the proposed model.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35808393</pmid><doi>10.3390/s22134898</doi><orcidid>https://orcid.org/0000-0001-9894-8737</orcidid><orcidid>https://orcid.org/0000-0002-1983-7375</orcidid><orcidid>https://orcid.org/0000-0002-1185-2773</orcidid><orcidid>https://orcid.org/0000-0001-8229-0512</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2022-06, Vol.22 (13), p.4898 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_eb58486da63e49d884a1c91282bb283e |
source | Open Access: PubMed Central; ProQuest - Publicly Available Content Database |
subjects | articular amplitude Biomechanical Phenomena Biomechanics Data processing Elbow Joint Forearm inertial magnetic sensors Kinematics Magnetic Phenomena Methods Motion capture Pronation Range of Motion, Articular Rehabilitation Sensors Signal processing Supination upper limb Virtual environments Virtual worlds |
title | A Kinematic Information Acquisition Model That Uses Digital Signals from an Inertial and Magnetic Motion Capture System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Kinematic%20Information%20Acquisition%20Model%20That%20Uses%20Digital%20Signals%20from%20an%20Inertial%20and%20Magnetic%20Motion%20Capture%20System&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Alarc%C3%B3n-Aldana,%20Andrea%20Catherine&rft.date=2022-06-29&rft.volume=22&rft.issue=13&rft.spage=4898&rft.pages=4898-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22134898&rft_dat=%3Cgale_doaj_%3EA723417109%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-d5aac5f4bd9c1c4b79e345881e4927e8470ed4f338393920b03d14c1031847d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2686183942&rft_id=info:pmid/35808393&rft_galeid=A723417109&rfr_iscdi=true |