Loading…

A Kinematic Information Acquisition Model That Uses Digital Signals from an Inertial and Magnetic Motion Capture System

This paper presents a model that enables the transformation of digital signals generated by an inertial and magnetic motion capture system into kinematic information. First, the operation and data generated by the used inertial and magnetic system are described. Subsequently, the five stages of the...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2022-06, Vol.22 (13), p.4898
Main Authors: Alarcón-Aldana, Andrea Catherine, Callejas-Cuervo, Mauro, Bastos-Filho, Teodiano, Bó, Antônio Padilha Lanari
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c508t-d5aac5f4bd9c1c4b79e345881e4927e8470ed4f338393920b03d14c1031847d13
cites cdi_FETCH-LOGICAL-c508t-d5aac5f4bd9c1c4b79e345881e4927e8470ed4f338393920b03d14c1031847d13
container_end_page
container_issue 13
container_start_page 4898
container_title Sensors (Basel, Switzerland)
container_volume 22
creator Alarcón-Aldana, Andrea Catherine
Callejas-Cuervo, Mauro
Bastos-Filho, Teodiano
Bó, Antônio Padilha Lanari
description This paper presents a model that enables the transformation of digital signals generated by an inertial and magnetic motion capture system into kinematic information. First, the operation and data generated by the used inertial and magnetic system are described. Subsequently, the five stages of the proposed model are described, concluding with its implementation in a virtual environment to display the kinematic information. Finally, the applied tests are presented to evaluate the performance of the model through the execution of four exercises on the upper limb: flexion and extension of the elbow, and pronation and supination of the forearm. The results show a mean squared error of 3.82° in elbow flexion-extension movements and 3.46° in forearm pronation-supination movements. The results were obtained by comparing the inertial and magnetic system versus an optical motion capture system, allowing for the identification of the usability and functionality of the proposed model.
doi_str_mv 10.3390/s22134898
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_eb58486da63e49d884a1c91282bb283e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723417109</galeid><doaj_id>oai_doaj_org_article_eb58486da63e49d884a1c91282bb283e</doaj_id><sourcerecordid>A723417109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-d5aac5f4bd9c1c4b79e345881e4927e8470ed4f338393920b03d14c1031847d13</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEoqVw4A8gS1zgsMVfSewL0mopsKIrDm3PlmNPUq8Se2snoP77Ortl1SIfPJp557Ffe4riPcHnjEn8JVFKGBdSvChOCad8ISjFL5_EJ8WblLYYU8aYeF2csFJgwSQ7Lf4u0S_nYdCjM2jt2xDnMHi0NHeTS24fb4KFHl3f6hHdJEjom-vcqHt05Tqv-4TaGAakfe6HOLpc0N6ije48zNRN2ENWejdOEdDVfRpheFu8anMrvHvcz4qb7xfXq5-Ly98_1qvl5cKUWIwLW2ptypY3VhpieFNLYLwUggCXtAbBawyWt9lVdiMpbjCzhBuCGck1S9hZsT5wbdBbtYtu0PFeBe3UPhFip3S-s-lBQVMKLiqrK5bpVgiuiZGECto0VDDIrK8H1m5qBrAG_Bh1_wz6vOLdrerCHyVpJUvGM-DTIyCGuwnSqAaXDPS99hCmpGgl6pryEpdZ-vE_6TZMcX7tWVWR7JfTrDo_qDqdDbj8fflck5eFwZngoXU5v6wp46QmWOaGz4cGE0NKEdrj7QlW8yyp4yxl7Yendo_Kf8PDHgDEdcL9</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686183942</pqid></control><display><type>article</type><title>A Kinematic Information Acquisition Model That Uses Digital Signals from an Inertial and Magnetic Motion Capture System</title><source>Open Access: PubMed Central</source><source>ProQuest - Publicly Available Content Database</source><creator>Alarcón-Aldana, Andrea Catherine ; Callejas-Cuervo, Mauro ; Bastos-Filho, Teodiano ; Bó, Antônio Padilha Lanari</creator><creatorcontrib>Alarcón-Aldana, Andrea Catherine ; Callejas-Cuervo, Mauro ; Bastos-Filho, Teodiano ; Bó, Antônio Padilha Lanari</creatorcontrib><description>This paper presents a model that enables the transformation of digital signals generated by an inertial and magnetic motion capture system into kinematic information. First, the operation and data generated by the used inertial and magnetic system are described. Subsequently, the five stages of the proposed model are described, concluding with its implementation in a virtual environment to display the kinematic information. Finally, the applied tests are presented to evaluate the performance of the model through the execution of four exercises on the upper limb: flexion and extension of the elbow, and pronation and supination of the forearm. The results show a mean squared error of 3.82° in elbow flexion-extension movements and 3.46° in forearm pronation-supination movements. The results were obtained by comparing the inertial and magnetic system versus an optical motion capture system, allowing for the identification of the usability and functionality of the proposed model.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22134898</identifier><identifier>PMID: 35808393</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>articular amplitude ; Biomechanical Phenomena ; Biomechanics ; Data processing ; Elbow Joint ; Forearm ; inertial magnetic sensors ; Kinematics ; Magnetic Phenomena ; Methods ; Motion capture ; Pronation ; Range of Motion, Articular ; Rehabilitation ; Sensors ; Signal processing ; Supination ; upper limb ; Virtual environments ; Virtual worlds</subject><ispartof>Sensors (Basel, Switzerland), 2022-06, Vol.22 (13), p.4898</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-d5aac5f4bd9c1c4b79e345881e4927e8470ed4f338393920b03d14c1031847d13</citedby><cites>FETCH-LOGICAL-c508t-d5aac5f4bd9c1c4b79e345881e4927e8470ed4f338393920b03d14c1031847d13</cites><orcidid>0000-0001-9894-8737 ; 0000-0002-1983-7375 ; 0000-0002-1185-2773 ; 0000-0001-8229-0512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2686183942/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2686183942?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35808393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alarcón-Aldana, Andrea Catherine</creatorcontrib><creatorcontrib>Callejas-Cuervo, Mauro</creatorcontrib><creatorcontrib>Bastos-Filho, Teodiano</creatorcontrib><creatorcontrib>Bó, Antônio Padilha Lanari</creatorcontrib><title>A Kinematic Information Acquisition Model That Uses Digital Signals from an Inertial and Magnetic Motion Capture System</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>This paper presents a model that enables the transformation of digital signals generated by an inertial and magnetic motion capture system into kinematic information. First, the operation and data generated by the used inertial and magnetic system are described. Subsequently, the five stages of the proposed model are described, concluding with its implementation in a virtual environment to display the kinematic information. Finally, the applied tests are presented to evaluate the performance of the model through the execution of four exercises on the upper limb: flexion and extension of the elbow, and pronation and supination of the forearm. The results show a mean squared error of 3.82° in elbow flexion-extension movements and 3.46° in forearm pronation-supination movements. The results were obtained by comparing the inertial and magnetic system versus an optical motion capture system, allowing for the identification of the usability and functionality of the proposed model.</description><subject>articular amplitude</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Data processing</subject><subject>Elbow Joint</subject><subject>Forearm</subject><subject>inertial magnetic sensors</subject><subject>Kinematics</subject><subject>Magnetic Phenomena</subject><subject>Methods</subject><subject>Motion capture</subject><subject>Pronation</subject><subject>Range of Motion, Articular</subject><subject>Rehabilitation</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Supination</subject><subject>upper limb</subject><subject>Virtual environments</subject><subject>Virtual worlds</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhiMEoqVw4A8gS1zgsMVfSewL0mopsKIrDm3PlmNPUq8Se2snoP77Ortl1SIfPJp557Ffe4riPcHnjEn8JVFKGBdSvChOCad8ISjFL5_EJ8WblLYYU8aYeF2csFJgwSQ7Lf4u0S_nYdCjM2jt2xDnMHi0NHeTS24fb4KFHl3f6hHdJEjom-vcqHt05Tqv-4TaGAakfe6HOLpc0N6ije48zNRN2ENWejdOEdDVfRpheFu8anMrvHvcz4qb7xfXq5-Ly98_1qvl5cKUWIwLW2ptypY3VhpieFNLYLwUggCXtAbBawyWt9lVdiMpbjCzhBuCGck1S9hZsT5wbdBbtYtu0PFeBe3UPhFip3S-s-lBQVMKLiqrK5bpVgiuiZGECto0VDDIrK8H1m5qBrAG_Bh1_wz6vOLdrerCHyVpJUvGM-DTIyCGuwnSqAaXDPS99hCmpGgl6pryEpdZ-vE_6TZMcX7tWVWR7JfTrDo_qDqdDbj8fflck5eFwZngoXU5v6wp46QmWOaGz4cGE0NKEdrj7QlW8yyp4yxl7Yendo_Kf8PDHgDEdcL9</recordid><startdate>20220629</startdate><enddate>20220629</enddate><creator>Alarcón-Aldana, Andrea Catherine</creator><creator>Callejas-Cuervo, Mauro</creator><creator>Bastos-Filho, Teodiano</creator><creator>Bó, Antônio Padilha Lanari</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9894-8737</orcidid><orcidid>https://orcid.org/0000-0002-1983-7375</orcidid><orcidid>https://orcid.org/0000-0002-1185-2773</orcidid><orcidid>https://orcid.org/0000-0001-8229-0512</orcidid></search><sort><creationdate>20220629</creationdate><title>A Kinematic Information Acquisition Model That Uses Digital Signals from an Inertial and Magnetic Motion Capture System</title><author>Alarcón-Aldana, Andrea Catherine ; Callejas-Cuervo, Mauro ; Bastos-Filho, Teodiano ; Bó, Antônio Padilha Lanari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-d5aac5f4bd9c1c4b79e345881e4927e8470ed4f338393920b03d14c1031847d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>articular amplitude</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Data processing</topic><topic>Elbow Joint</topic><topic>Forearm</topic><topic>inertial magnetic sensors</topic><topic>Kinematics</topic><topic>Magnetic Phenomena</topic><topic>Methods</topic><topic>Motion capture</topic><topic>Pronation</topic><topic>Range of Motion, Articular</topic><topic>Rehabilitation</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Supination</topic><topic>upper limb</topic><topic>Virtual environments</topic><topic>Virtual worlds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alarcón-Aldana, Andrea Catherine</creatorcontrib><creatorcontrib>Callejas-Cuervo, Mauro</creatorcontrib><creatorcontrib>Bastos-Filho, Teodiano</creatorcontrib><creatorcontrib>Bó, Antônio Padilha Lanari</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alarcón-Aldana, Andrea Catherine</au><au>Callejas-Cuervo, Mauro</au><au>Bastos-Filho, Teodiano</au><au>Bó, Antônio Padilha Lanari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Kinematic Information Acquisition Model That Uses Digital Signals from an Inertial and Magnetic Motion Capture System</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2022-06-29</date><risdate>2022</risdate><volume>22</volume><issue>13</issue><spage>4898</spage><pages>4898-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>This paper presents a model that enables the transformation of digital signals generated by an inertial and magnetic motion capture system into kinematic information. First, the operation and data generated by the used inertial and magnetic system are described. Subsequently, the five stages of the proposed model are described, concluding with its implementation in a virtual environment to display the kinematic information. Finally, the applied tests are presented to evaluate the performance of the model through the execution of four exercises on the upper limb: flexion and extension of the elbow, and pronation and supination of the forearm. The results show a mean squared error of 3.82° in elbow flexion-extension movements and 3.46° in forearm pronation-supination movements. The results were obtained by comparing the inertial and magnetic system versus an optical motion capture system, allowing for the identification of the usability and functionality of the proposed model.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35808393</pmid><doi>10.3390/s22134898</doi><orcidid>https://orcid.org/0000-0001-9894-8737</orcidid><orcidid>https://orcid.org/0000-0002-1983-7375</orcidid><orcidid>https://orcid.org/0000-0002-1185-2773</orcidid><orcidid>https://orcid.org/0000-0001-8229-0512</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2022-06, Vol.22 (13), p.4898
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_eb58486da63e49d884a1c91282bb283e
source Open Access: PubMed Central; ProQuest - Publicly Available Content Database
subjects articular amplitude
Biomechanical Phenomena
Biomechanics
Data processing
Elbow Joint
Forearm
inertial magnetic sensors
Kinematics
Magnetic Phenomena
Methods
Motion capture
Pronation
Range of Motion, Articular
Rehabilitation
Sensors
Signal processing
Supination
upper limb
Virtual environments
Virtual worlds
title A Kinematic Information Acquisition Model That Uses Digital Signals from an Inertial and Magnetic Motion Capture System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Kinematic%20Information%20Acquisition%20Model%20That%20Uses%20Digital%20Signals%20from%20an%20Inertial%20and%20Magnetic%20Motion%20Capture%20System&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Alarc%C3%B3n-Aldana,%20Andrea%20Catherine&rft.date=2022-06-29&rft.volume=22&rft.issue=13&rft.spage=4898&rft.pages=4898-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22134898&rft_dat=%3Cgale_doaj_%3EA723417109%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-d5aac5f4bd9c1c4b79e345881e4927e8470ed4f338393920b03d14c1031847d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2686183942&rft_id=info:pmid/35808393&rft_galeid=A723417109&rfr_iscdi=true