Loading…
Adaptive deep learning for head and neck cancer detection using hyperspectral imaging
It can be challenging to detect tumor margins during surgery for complete resection. The purpose of this work is to develop a novel learning method that learns the difference between the tumor and benign tissue adaptively for cancer detection on hyperspectral images in an animal model. Specifically,...
Saved in:
Published in: | Visual computing for industry, biomedicine and art biomedicine and art, 2019-11, Vol.2 (1), p.18-12, Article 18 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c602t-c037a1852921140969433bfa539a46f68edbe37ace967b2bfd7e35c5c5090e1e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c602t-c037a1852921140969433bfa539a46f68edbe37ace967b2bfd7e35c5c5090e1e3 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 18 |
container_title | Visual computing for industry, biomedicine and art |
container_volume | 2 |
creator | Ma, Ling Lu, Guolan Wang, Dongsheng Qin, Xulei Chen, Zhuo Georgia Fei, Baowei |
description | It can be challenging to detect tumor margins during surgery for complete resection. The purpose of this work is to develop a novel learning method that learns the difference between the tumor and benign tissue adaptively for cancer detection on hyperspectral images in an animal model. Specifically, an auto-encoder network is trained based on the wavelength bands on hyperspectral images to extract the deep information to create a pixel-wise prediction of cancerous and benign pixel. According to the output hypothesis of each pixel, the misclassified pixels would be reclassified in the right prediction direction based on their adaptive weights. The auto-encoder network is again trained based on these updated pixels. The learner can adaptively improve the ability to identify the cancer and benign tissue by focusing on the misclassified pixels, and thus can improve the detection performance. The adaptive deep learning method highlighting the tumor region proved to be accurate in detecting the tumor boundary on hyperspectral images and achieved a sensitivity of 92.32% and a specificity of 91.31% in our animal experiments. This adaptive learning method on hyperspectral imaging has the potential to provide a noninvasive tool for tumor detection, especially, for the tumor whose margin is indistinct and irregular. |
doi_str_mv | 10.1186/s42492-019-0023-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_eb6f61dd41744a0c954dbf1c20bc65c6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_eb6f61dd41744a0c954dbf1c20bc65c6</doaj_id><sourcerecordid>2379021836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c602t-c037a1852921140969433bfa539a46f68edbe37ace967b2bfd7e35c5c5090e1e3</originalsourceid><addsrcrecordid>eNp1kstq3TAQhkVpSEKSB8imCLrpxq3utjaFEHoJBLpp1kKWxj4-9ZFcyQ7k7SvXaZoUihYSM5_-0Wh-hC4peU9poz5kwYRmFaG6IoTxqnmFTplkohJCsNfPzifoIuc9KZAktdDNMTrhjGoiSHOK7q68nebhHrAHmPAINoUh9LiLCe_AemyDxwHcD-xscJAKNoObhxjwkldw9zBBylOJJTvi4WD7Ej1HR50dM1w87mfo7vOn79dfq9tvX26ur24rpwibK0d4bWkjmWaUCqKVFpy3nZVcW6E61YBvoSAOtKpb1na-Bi5dWUQToMDP0M2m66PdmymV8unBRDuY34GYemPTPLgRDLRFkHovaC2EJU5L4duOOkZap6RTRevjpjUt7QG8g7B29EL0ZSYMO9PHe1MTKWXNi8C7R4EUfy6QZ3MYsoNxtAHikg3jtSaMNnyt9fYfdB-XFMpXFYoqXialV4pulEsx5wTd02MoMasHzOYBUzxgVg-Yptx587yLpxt_Jl4AtgG5pEIP6W_p_6v-AuravE8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316325096</pqid></control><display><type>article</type><title>Adaptive deep learning for head and neck cancer detection using hyperspectral imaging</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Ma, Ling ; Lu, Guolan ; Wang, Dongsheng ; Qin, Xulei ; Chen, Zhuo Georgia ; Fei, Baowei</creator><creatorcontrib>Ma, Ling ; Lu, Guolan ; Wang, Dongsheng ; Qin, Xulei ; Chen, Zhuo Georgia ; Fei, Baowei</creatorcontrib><description>It can be challenging to detect tumor margins during surgery for complete resection. The purpose of this work is to develop a novel learning method that learns the difference between the tumor and benign tissue adaptively for cancer detection on hyperspectral images in an animal model. Specifically, an auto-encoder network is trained based on the wavelength bands on hyperspectral images to extract the deep information to create a pixel-wise prediction of cancerous and benign pixel. According to the output hypothesis of each pixel, the misclassified pixels would be reclassified in the right prediction direction based on their adaptive weights. The auto-encoder network is again trained based on these updated pixels. The learner can adaptively improve the ability to identify the cancer and benign tissue by focusing on the misclassified pixels, and thus can improve the detection performance. The adaptive deep learning method highlighting the tumor region proved to be accurate in detecting the tumor boundary on hyperspectral images and achieved a sensitivity of 92.32% and a specificity of 91.31% in our animal experiments. This adaptive learning method on hyperspectral imaging has the potential to provide a noninvasive tool for tumor detection, especially, for the tumor whose margin is indistinct and irregular.</description><identifier>ISSN: 2524-4442</identifier><identifier>ISSN: 2096-496X</identifier><identifier>EISSN: 2524-4442</identifier><identifier>DOI: 10.1186/s42492-019-0023-8</identifier><identifier>PMID: 32190408</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Adaptive learning ; CAE) and Design ; Cancer ; Coders ; Computer Graphics ; Computer Imaging ; Computer Science ; Computer-Aided Engineering (CAD ; Deep learning ; Hyperspectral imaging ; Image detection ; Image Processing and Computer Vision ; Machine learning ; Media Design ; Medical Imaging Modeling ; Noninvasive cancer detection ; Original ; Original Article ; Pattern Recognition and Graphics ; Pixels ; Teaching methods ; Tumors ; Vision</subject><ispartof>Visual computing for industry, biomedicine and art, 2019-11, Vol.2 (1), p.18-12, Article 18</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019.</rights><rights>Visual Computing for Industry, Biomedicine, and Art is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c602t-c037a1852921140969433bfa539a46f68edbe37ace967b2bfd7e35c5c5090e1e3</citedby><cites>FETCH-LOGICAL-c602t-c037a1852921140969433bfa539a46f68edbe37ace967b2bfd7e35c5c5090e1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055573/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2316325096?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32190408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Ling</creatorcontrib><creatorcontrib>Lu, Guolan</creatorcontrib><creatorcontrib>Wang, Dongsheng</creatorcontrib><creatorcontrib>Qin, Xulei</creatorcontrib><creatorcontrib>Chen, Zhuo Georgia</creatorcontrib><creatorcontrib>Fei, Baowei</creatorcontrib><title>Adaptive deep learning for head and neck cancer detection using hyperspectral imaging</title><title>Visual computing for industry, biomedicine and art</title><addtitle>Vis. Comput. Ind. Biomed. Art</addtitle><addtitle>Vis Comput Ind Biomed Art</addtitle><description>It can be challenging to detect tumor margins during surgery for complete resection. The purpose of this work is to develop a novel learning method that learns the difference between the tumor and benign tissue adaptively for cancer detection on hyperspectral images in an animal model. Specifically, an auto-encoder network is trained based on the wavelength bands on hyperspectral images to extract the deep information to create a pixel-wise prediction of cancerous and benign pixel. According to the output hypothesis of each pixel, the misclassified pixels would be reclassified in the right prediction direction based on their adaptive weights. The auto-encoder network is again trained based on these updated pixels. The learner can adaptively improve the ability to identify the cancer and benign tissue by focusing on the misclassified pixels, and thus can improve the detection performance. The adaptive deep learning method highlighting the tumor region proved to be accurate in detecting the tumor boundary on hyperspectral images and achieved a sensitivity of 92.32% and a specificity of 91.31% in our animal experiments. This adaptive learning method on hyperspectral imaging has the potential to provide a noninvasive tool for tumor detection, especially, for the tumor whose margin is indistinct and irregular.</description><subject>Adaptive learning</subject><subject>CAE) and Design</subject><subject>Cancer</subject><subject>Coders</subject><subject>Computer Graphics</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Deep learning</subject><subject>Hyperspectral imaging</subject><subject>Image detection</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Media Design</subject><subject>Medical Imaging Modeling</subject><subject>Noninvasive cancer detection</subject><subject>Original</subject><subject>Original Article</subject><subject>Pattern Recognition and Graphics</subject><subject>Pixels</subject><subject>Teaching methods</subject><subject>Tumors</subject><subject>Vision</subject><issn>2524-4442</issn><issn>2096-496X</issn><issn>2524-4442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kstq3TAQhkVpSEKSB8imCLrpxq3utjaFEHoJBLpp1kKWxj4-9ZFcyQ7k7SvXaZoUihYSM5_-0Wh-hC4peU9poz5kwYRmFaG6IoTxqnmFTplkohJCsNfPzifoIuc9KZAktdDNMTrhjGoiSHOK7q68nebhHrAHmPAINoUh9LiLCe_AemyDxwHcD-xscJAKNoObhxjwkldw9zBBylOJJTvi4WD7Ej1HR50dM1w87mfo7vOn79dfq9tvX26ur24rpwibK0d4bWkjmWaUCqKVFpy3nZVcW6E61YBvoSAOtKpb1na-Bi5dWUQToMDP0M2m66PdmymV8unBRDuY34GYemPTPLgRDLRFkHovaC2EJU5L4duOOkZap6RTRevjpjUt7QG8g7B29EL0ZSYMO9PHe1MTKWXNi8C7R4EUfy6QZ3MYsoNxtAHikg3jtSaMNnyt9fYfdB-XFMpXFYoqXialV4pulEsx5wTd02MoMasHzOYBUzxgVg-Yptx587yLpxt_Jl4AtgG5pEIP6W_p_6v-AuravE8</recordid><startdate>20191121</startdate><enddate>20191121</enddate><creator>Ma, Ling</creator><creator>Lu, Guolan</creator><creator>Wang, Dongsheng</creator><creator>Qin, Xulei</creator><creator>Chen, Zhuo Georgia</creator><creator>Fei, Baowei</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20191121</creationdate><title>Adaptive deep learning for head and neck cancer detection using hyperspectral imaging</title><author>Ma, Ling ; Lu, Guolan ; Wang, Dongsheng ; Qin, Xulei ; Chen, Zhuo Georgia ; Fei, Baowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c602t-c037a1852921140969433bfa539a46f68edbe37ace967b2bfd7e35c5c5090e1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive learning</topic><topic>CAE) and Design</topic><topic>Cancer</topic><topic>Coders</topic><topic>Computer Graphics</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Deep learning</topic><topic>Hyperspectral imaging</topic><topic>Image detection</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Media Design</topic><topic>Medical Imaging Modeling</topic><topic>Noninvasive cancer detection</topic><topic>Original</topic><topic>Original Article</topic><topic>Pattern Recognition and Graphics</topic><topic>Pixels</topic><topic>Teaching methods</topic><topic>Tumors</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Ling</creatorcontrib><creatorcontrib>Lu, Guolan</creatorcontrib><creatorcontrib>Wang, Dongsheng</creatorcontrib><creatorcontrib>Qin, Xulei</creatorcontrib><creatorcontrib>Chen, Zhuo Georgia</creatorcontrib><creatorcontrib>Fei, Baowei</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Visual computing for industry, biomedicine and art</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Ling</au><au>Lu, Guolan</au><au>Wang, Dongsheng</au><au>Qin, Xulei</au><au>Chen, Zhuo Georgia</au><au>Fei, Baowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive deep learning for head and neck cancer detection using hyperspectral imaging</atitle><jtitle>Visual computing for industry, biomedicine and art</jtitle><stitle>Vis. Comput. Ind. Biomed. Art</stitle><addtitle>Vis Comput Ind Biomed Art</addtitle><date>2019-11-21</date><risdate>2019</risdate><volume>2</volume><issue>1</issue><spage>18</spage><epage>12</epage><pages>18-12</pages><artnum>18</artnum><issn>2524-4442</issn><issn>2096-496X</issn><eissn>2524-4442</eissn><abstract>It can be challenging to detect tumor margins during surgery for complete resection. The purpose of this work is to develop a novel learning method that learns the difference between the tumor and benign tissue adaptively for cancer detection on hyperspectral images in an animal model. Specifically, an auto-encoder network is trained based on the wavelength bands on hyperspectral images to extract the deep information to create a pixel-wise prediction of cancerous and benign pixel. According to the output hypothesis of each pixel, the misclassified pixels would be reclassified in the right prediction direction based on their adaptive weights. The auto-encoder network is again trained based on these updated pixels. The learner can adaptively improve the ability to identify the cancer and benign tissue by focusing on the misclassified pixels, and thus can improve the detection performance. The adaptive deep learning method highlighting the tumor region proved to be accurate in detecting the tumor boundary on hyperspectral images and achieved a sensitivity of 92.32% and a specificity of 91.31% in our animal experiments. This adaptive learning method on hyperspectral imaging has the potential to provide a noninvasive tool for tumor detection, especially, for the tumor whose margin is indistinct and irregular.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>32190408</pmid><doi>10.1186/s42492-019-0023-8</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2524-4442 |
ispartof | Visual computing for industry, biomedicine and art, 2019-11, Vol.2 (1), p.18-12, Article 18 |
issn | 2524-4442 2096-496X 2524-4442 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_eb6f61dd41744a0c954dbf1c20bc65c6 |
source | PubMed Central Free; Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Adaptive learning CAE) and Design Cancer Coders Computer Graphics Computer Imaging Computer Science Computer-Aided Engineering (CAD Deep learning Hyperspectral imaging Image detection Image Processing and Computer Vision Machine learning Media Design Medical Imaging Modeling Noninvasive cancer detection Original Original Article Pattern Recognition and Graphics Pixels Teaching methods Tumors Vision |
title | Adaptive deep learning for head and neck cancer detection using hyperspectral imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20deep%20learning%20for%20head%20and%20neck%20cancer%20detection%20using%20hyperspectral%20imaging&rft.jtitle=Visual%20computing%20for%20industry,%20biomedicine%20and%20art&rft.au=Ma,%20Ling&rft.date=2019-11-21&rft.volume=2&rft.issue=1&rft.spage=18&rft.epage=12&rft.pages=18-12&rft.artnum=18&rft.issn=2524-4442&rft.eissn=2524-4442&rft_id=info:doi/10.1186/s42492-019-0023-8&rft_dat=%3Cproquest_doaj_%3E2379021836%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c602t-c037a1852921140969433bfa539a46f68edbe37ace967b2bfd7e35c5c5090e1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2316325096&rft_id=info:pmid/32190408&rfr_iscdi=true |