Loading…
Potential of Resolution-Enhanced Hyperspectral Data for Mineral Mapping Using Simulated EnMAP and Sentinel-2 Images
Spaceborne hyperspectral images are useful for large scale mineral mapping. Acquired at a ground sampling distance (GSD) of 30 m, the Environmental Mapping and Analysis Program (EnMAP) will be capable of putting many issues related to environment monitoring and resource exploration in perspective wi...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2016, Vol.8 (3), p.172-172 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spaceborne hyperspectral images are useful for large scale mineral mapping. Acquired at a ground sampling distance (GSD) of 30 m, the Environmental Mapping and Analysis Program (EnMAP) will be capable of putting many issues related to environment monitoring and resource exploration in perspective with measurements in the spectral range between 420 and 2450 nm. However, a higher spatial resolution is preferable for many applications. This paper investigates the potential of fusion-based resolution enhancement of hyperspectral data for mineral mapping. A pair of EnMAP and Sentinel-2 images is generated from a HyMap scene over a mining area. The simulation is based on well-established sensor end-to-end simulation tools. The EnMAP image is fused with Sentinel-2 10-m-GSD bands using a matrix factorization method to obtain resolution-enhanced EnMAP data at a 10 m GSD. Quality assessments of the enhanced data are conducted using quantitative measures and continuum removal and both show that high spectral and spatial fidelity are maintained. Finally, the results of spectral unmixing are compared with those expected from high-resolution hyperspectral data at a 10 m GSD. The comparison demonstrates high resemblance and shows the great potential of the resolution enhancement method for EnMAP type data in mineral mapping. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs8030172 |