Loading…
A novel single robot image shadow detection method based on convolutional block attention module and unsupervised learning network
Shadow detection plays a very important role in image processing. Although many algorithms have been proposed in different environments, it is still a challenging task to detect shadows in natural scenes. In this paper, we propose a convolutional block attention module (CBAM) and unsupervised domain...
Saved in:
Published in: | Frontiers in neurorobotics 2022-11, Vol.16, p.1059497-1059497 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Shadow detection plays a very important role in image processing. Although many algorithms have been proposed in different environments, it is still a challenging task to detect shadows in natural scenes. In this paper, we propose a convolutional block attention module (CBAM) and unsupervised domain adaptation adversarial learning network for single image shadow detection. The new method mainly contains three steps. Firstly, in order to reduce the data deviation between the domains, the hierarchical domain adaptation strategy is adopted to calibrate the feature distribution from low level to high level between the source domain and the target domain. Secondly, in order to enhance the soft shadow detection ability of the model, the boundary adversarial branch is proposed to obtain structured shadow boundary. Meanwhile, a CBAM is added in the model to reduce the correlation between different semantic information. Thirdly, the entropy adversarial branch is combined to further suppress the high uncertainty at the boundary of the prediction results, and it obtains the smooth and accurate shadow boundary. Finally, we conduct abundant experiments on public datasets, the RMSE has the lowest values with 9.6 and BER with 6.6 on ISTD dataset, the results show that the proposed shadow detection method has better edge structure compared with the existing deep learning detection methods. |
---|---|
ISSN: | 1662-5218 1662-5218 |
DOI: | 10.3389/fnbot.2022.1059497 |