Loading…
Growth Performance, Metabolomics, and Microbiome Responses of Weaned Pigs Fed Diets Containing Growth-Promoting Antibiotics and Various Feed Additives
The objective of this study was to determine the potential biological mechanisms of improved growth performance associated with potential changes in the metabolic profiles and intestinal microbiome composition of weaned pigs fed various feed additives. Three separate 42 day experiments were conducte...
Saved in:
Published in: | Animals (Basel) 2023-12, Vol.14 (1), p.60 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The objective of this study was to determine the potential biological mechanisms of improved growth performance associated with potential changes in the metabolic profiles and intestinal microbiome composition of weaned pigs fed various feed additives. Three separate 42 day experiments were conducted to evaluate the following dietary treatments: chlortetracycline and sulfamethazine (PC), herbal blends, turmeric, garlic, bitter orange extract, sweet orange extract, volatile and semi-volatile milk-derived substances, yeast nucleotide, and cell wall products, compared with feeding a non-supplemented diet (NC). In all three experiments, only pigs fed PC had improved (
< 0.05) ADG and ADFI compared with pigs fed NC. No differences in metabolome and microbiome responses were observed between feed additive treatments and NC. None of the feed additives affected alpha or beta microbiome diversity in the ileum and cecum, but the abundance of specific bacterial taxa was affected by some dietary treatments. Except for feeding antibiotics, none of the other feed additives were effective in improving growth performance or significantly altering the metabolomic profiles, but some additives (e.g., herbal blends and garlic) increased (
< 0.05) the relative abundance of potentially protective bacterial genera that may be beneficial during disease challenge in weaned pigs. |
---|---|
ISSN: | 2076-2615 2076-2615 |
DOI: | 10.3390/ani14010060 |