Loading…
An approximate solution of a time fractional Burgers’ equation involving the Caputo-Katugampola fractional derivative
The reduced version of the fractional Laplace transform, called the v-Laplac transform, is used in combination with the Adomian decomposition method to generate approximate solutions of the fractional Berger's equation with the Caputo-Katugampola fractional derivative. The effect of the order o...
Saved in:
Published in: | Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters 2023-12, Vol.8, p.100560, Article 100560 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The reduced version of the fractional Laplace transform, called the v-Laplac transform, is used in combination with the Adomian decomposition method to generate approximate solutions of the fractional Berger's equation with the Caputo-Katugampola fractional derivative. The effect of the order of the Caputo-Katugampola fractional derivative in Berger's equation is analyzed. The obtained approximate solutions are displayed graphically. The graphs and numerical solutions have demonstrated a tight correspondence between the exact and v-Laplace DM solutions. It is observed that the solutions for various orders u and v display the same behavior and tend to an integer-order problem's solution, confirming the validity of the provided method. |
---|---|
ISSN: | 2666-8181 2666-8181 |
DOI: | 10.1016/j.padiff.2023.100560 |