Loading…

A particle-based optimization of artificial neural network for earthquake-induced landslide assessment in Ludian county, China

The focal point of this study is to assess the efficacy of a state-of-the-art optimization technique namely, particle swarm optimization (PSO) for enhancing the performance of the artificial neural network (ANN) in modeling the seismic landslides at Ludian districts, China. Twelve geological and hyd...

Full description

Saved in:
Bibliographic Details
Published in:Geomatics, natural hazards and risk natural hazards and risk, 2019-01, Vol.10 (1), p.1750-1771
Main Authors: Xi, Wenfei, Li, Guozhu, Moayedi, Hossein, Nguyen, Hoang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-e0c2ad5f7407c52ea3f976cc86c95aaa73432ab2a564f9938ad37c5f3d5dda713
cites cdi_FETCH-LOGICAL-c451t-e0c2ad5f7407c52ea3f976cc86c95aaa73432ab2a564f9938ad37c5f3d5dda713
container_end_page 1771
container_issue 1
container_start_page 1750
container_title Geomatics, natural hazards and risk
container_volume 10
creator Xi, Wenfei
Li, Guozhu
Moayedi, Hossein
Nguyen, Hoang
description The focal point of this study is to assess the efficacy of a state-of-the-art optimization technique namely, particle swarm optimization (PSO) for enhancing the performance of the artificial neural network (ANN) in modeling the seismic landslides at Ludian districts, China. Twelve geological and hydrological landslide-conditioning factors namely, elevation, lithology, slope degree, slope aspect, stream power index, peak ground acceleration, topographic wetness index, distance to river, distance to road, distance to fault, normalized difference vegetation index and plan curvature were considered within a geographic information system (GIS). After achieving the optimal structure of the multilayer perceptron neural network, the PSO algorithm was applied to improve its efficiency. The landslide susceptibility maps were generated in a GIS environment and area under the curve (AUC) criterion was used to assess the integrity of employed predictive models. The results showed that after applying the PSO algorithm, AUC experiences a significant increase from 0.765 to 0.825 in the validation phase. Moreover, respective AUCs of 0.812 and 0.828 obtained for the training phase of ANN and PSO-ANN reveal the efficiency of the proposed algorithm in improving the ANN accuracy.
doi_str_mv 10.1080/19475705.2019.1615005
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ebcf01a588e9485c83082a23afffabba</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ebcf01a588e9485c83082a23afffabba</doaj_id><sourcerecordid>2328367984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-e0c2ad5f7407c52ea3f976cc86c95aaa73432ab2a564f9938ad37c5f3d5dda713</originalsourceid><addsrcrecordid>eNp9kUtPGzEUhUdVkYooPwHJUrdM8GM89uxAUSlIkdjA2rrjR3GY2MH2qAqL_nYckrKsN9e699zP1jlNc0HwgmCJr8jQCS4wX1BMhgXpCceYf2lO9_2WC8K-ft4x_9ac57zG9TAqBe5Om783aAupeD3ZdoRsDYrb4jf-DYqPAUWH9lPntYcJBTunj1L-xPSCXEzI1vHz6wwvtvXBzLoCJggmT95YBDnbnDc2FOQDWs3GQ0A6zqHsLtHy2Qf43pw4mLI9P9az5un25-Pyrl09_Lpf3qxa3XFSWos1BcOd6LDQnFpgbhC91rLXAwcAwTpGYaTA-84NA5NgWBU6ZrgxUE04a-4PXBNhrbbJbyDtVASvPhox_VZHF5QdtcMEuJR26CTXkmFJgTJwzsE4QmX9OLC2Kb7ONhe1jnMK9fuKVltZLwbZVRU_qHSKOSfrPl8lWO2TU_-SU_vk1DG5und92POh-ruB6vRkVIHdFJNLELTPiv0f8Q63v6Iq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328367984</pqid></control><display><type>article</type><title>A particle-based optimization of artificial neural network for earthquake-induced landslide assessment in Ludian county, China</title><source>Taylor &amp; Francis_OA刊</source><creator>Xi, Wenfei ; Li, Guozhu ; Moayedi, Hossein ; Nguyen, Hoang</creator><creatorcontrib>Xi, Wenfei ; Li, Guozhu ; Moayedi, Hossein ; Nguyen, Hoang</creatorcontrib><description>The focal point of this study is to assess the efficacy of a state-of-the-art optimization technique namely, particle swarm optimization (PSO) for enhancing the performance of the artificial neural network (ANN) in modeling the seismic landslides at Ludian districts, China. Twelve geological and hydrological landslide-conditioning factors namely, elevation, lithology, slope degree, slope aspect, stream power index, peak ground acceleration, topographic wetness index, distance to river, distance to road, distance to fault, normalized difference vegetation index and plan curvature were considered within a geographic information system (GIS). After achieving the optimal structure of the multilayer perceptron neural network, the PSO algorithm was applied to improve its efficiency. The landslide susceptibility maps were generated in a GIS environment and area under the curve (AUC) criterion was used to assess the integrity of employed predictive models. The results showed that after applying the PSO algorithm, AUC experiences a significant increase from 0.765 to 0.825 in the validation phase. Moreover, respective AUCs of 0.812 and 0.828 obtained for the training phase of ANN and PSO-ANN reveal the efficiency of the proposed algorithm in improving the ANN accuracy.</description><identifier>ISSN: 1947-5705</identifier><identifier>EISSN: 1947-5713</identifier><identifier>DOI: 10.1080/19475705.2019.1615005</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Acceleration ; Algorithms ; Artificial neural network ; Artificial neural networks ; Distance ; earthquake ; Earthquakes ; Elevation ; Geographic information systems ; Geographical information systems ; GIS ; hybrid algorithm ; Hydrology ; Information systems ; landslide assessment ; Landslides ; Lithology ; Ludian county ; Multilayer perceptrons ; Neural networks ; Normalized difference vegetative index ; Optimization techniques ; Particle swarm optimization ; Prediction models ; Remote sensing ; Rivers ; Seismic activity ; Seismic response ; Slopes ; Training ; Vegetation index ; Wetness index</subject><ispartof>Geomatics, natural hazards and risk, 2019-01, Vol.10 (1), p.1750-1771</ispartof><rights>2019 The Author(s). Published by Informa UK Limited Trading as Taylor &amp; Francis Group. 2019</rights><rights>2019 The Author(s). Published by Informa UK Limited Trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-e0c2ad5f7407c52ea3f976cc86c95aaa73432ab2a564f9938ad37c5f3d5dda713</citedby><cites>FETCH-LOGICAL-c451t-e0c2ad5f7407c52ea3f976cc86c95aaa73432ab2a564f9938ad37c5f3d5dda713</cites><orcidid>0000-0002-7849-9951 ; 0000-0002-5625-1437 ; 0000-0002-8576-7096 ; 0000-0001-6122-8314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/19475705.2019.1615005$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/19475705.2019.1615005$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27481,27903,27904,59119,59120</link.rule.ids></links><search><creatorcontrib>Xi, Wenfei</creatorcontrib><creatorcontrib>Li, Guozhu</creatorcontrib><creatorcontrib>Moayedi, Hossein</creatorcontrib><creatorcontrib>Nguyen, Hoang</creatorcontrib><title>A particle-based optimization of artificial neural network for earthquake-induced landslide assessment in Ludian county, China</title><title>Geomatics, natural hazards and risk</title><description>The focal point of this study is to assess the efficacy of a state-of-the-art optimization technique namely, particle swarm optimization (PSO) for enhancing the performance of the artificial neural network (ANN) in modeling the seismic landslides at Ludian districts, China. Twelve geological and hydrological landslide-conditioning factors namely, elevation, lithology, slope degree, slope aspect, stream power index, peak ground acceleration, topographic wetness index, distance to river, distance to road, distance to fault, normalized difference vegetation index and plan curvature were considered within a geographic information system (GIS). After achieving the optimal structure of the multilayer perceptron neural network, the PSO algorithm was applied to improve its efficiency. The landslide susceptibility maps were generated in a GIS environment and area under the curve (AUC) criterion was used to assess the integrity of employed predictive models. The results showed that after applying the PSO algorithm, AUC experiences a significant increase from 0.765 to 0.825 in the validation phase. Moreover, respective AUCs of 0.812 and 0.828 obtained for the training phase of ANN and PSO-ANN reveal the efficiency of the proposed algorithm in improving the ANN accuracy.</description><subject>Acceleration</subject><subject>Algorithms</subject><subject>Artificial neural network</subject><subject>Artificial neural networks</subject><subject>Distance</subject><subject>earthquake</subject><subject>Earthquakes</subject><subject>Elevation</subject><subject>Geographic information systems</subject><subject>Geographical information systems</subject><subject>GIS</subject><subject>hybrid algorithm</subject><subject>Hydrology</subject><subject>Information systems</subject><subject>landslide assessment</subject><subject>Landslides</subject><subject>Lithology</subject><subject>Ludian county</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Normalized difference vegetative index</subject><subject>Optimization techniques</subject><subject>Particle swarm optimization</subject><subject>Prediction models</subject><subject>Remote sensing</subject><subject>Rivers</subject><subject>Seismic activity</subject><subject>Seismic response</subject><subject>Slopes</subject><subject>Training</subject><subject>Vegetation index</subject><subject>Wetness index</subject><issn>1947-5705</issn><issn>1947-5713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtPGzEUhUdVkYooPwHJUrdM8GM89uxAUSlIkdjA2rrjR3GY2MH2qAqL_nYckrKsN9e699zP1jlNc0HwgmCJr8jQCS4wX1BMhgXpCceYf2lO9_2WC8K-ft4x_9ac57zG9TAqBe5Om783aAupeD3ZdoRsDYrb4jf-DYqPAUWH9lPntYcJBTunj1L-xPSCXEzI1vHz6wwvtvXBzLoCJggmT95YBDnbnDc2FOQDWs3GQ0A6zqHsLtHy2Qf43pw4mLI9P9az5un25-Pyrl09_Lpf3qxa3XFSWos1BcOd6LDQnFpgbhC91rLXAwcAwTpGYaTA-84NA5NgWBU6ZrgxUE04a-4PXBNhrbbJbyDtVASvPhox_VZHF5QdtcMEuJR26CTXkmFJgTJwzsE4QmX9OLC2Kb7ONhe1jnMK9fuKVltZLwbZVRU_qHSKOSfrPl8lWO2TU_-SU_vk1DG5und92POh-ruB6vRkVIHdFJNLELTPiv0f8Q63v6Iq</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Xi, Wenfei</creator><creator>Li, Guozhu</creator><creator>Moayedi, Hossein</creator><creator>Nguyen, Hoang</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7849-9951</orcidid><orcidid>https://orcid.org/0000-0002-5625-1437</orcidid><orcidid>https://orcid.org/0000-0002-8576-7096</orcidid><orcidid>https://orcid.org/0000-0001-6122-8314</orcidid></search><sort><creationdate>20190101</creationdate><title>A particle-based optimization of artificial neural network for earthquake-induced landslide assessment in Ludian county, China</title><author>Xi, Wenfei ; Li, Guozhu ; Moayedi, Hossein ; Nguyen, Hoang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-e0c2ad5f7407c52ea3f976cc86c95aaa73432ab2a564f9938ad37c5f3d5dda713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Algorithms</topic><topic>Artificial neural network</topic><topic>Artificial neural networks</topic><topic>Distance</topic><topic>earthquake</topic><topic>Earthquakes</topic><topic>Elevation</topic><topic>Geographic information systems</topic><topic>Geographical information systems</topic><topic>GIS</topic><topic>hybrid algorithm</topic><topic>Hydrology</topic><topic>Information systems</topic><topic>landslide assessment</topic><topic>Landslides</topic><topic>Lithology</topic><topic>Ludian county</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Normalized difference vegetative index</topic><topic>Optimization techniques</topic><topic>Particle swarm optimization</topic><topic>Prediction models</topic><topic>Remote sensing</topic><topic>Rivers</topic><topic>Seismic activity</topic><topic>Seismic response</topic><topic>Slopes</topic><topic>Training</topic><topic>Vegetation index</topic><topic>Wetness index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xi, Wenfei</creatorcontrib><creatorcontrib>Li, Guozhu</creatorcontrib><creatorcontrib>Moayedi, Hossein</creatorcontrib><creatorcontrib>Nguyen, Hoang</creatorcontrib><collection>Taylor &amp; Francis_OA刊</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>Directory of Open Access Journals</collection><jtitle>Geomatics, natural hazards and risk</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xi, Wenfei</au><au>Li, Guozhu</au><au>Moayedi, Hossein</au><au>Nguyen, Hoang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A particle-based optimization of artificial neural network for earthquake-induced landslide assessment in Ludian county, China</atitle><jtitle>Geomatics, natural hazards and risk</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>1750</spage><epage>1771</epage><pages>1750-1771</pages><issn>1947-5705</issn><eissn>1947-5713</eissn><abstract>The focal point of this study is to assess the efficacy of a state-of-the-art optimization technique namely, particle swarm optimization (PSO) for enhancing the performance of the artificial neural network (ANN) in modeling the seismic landslides at Ludian districts, China. Twelve geological and hydrological landslide-conditioning factors namely, elevation, lithology, slope degree, slope aspect, stream power index, peak ground acceleration, topographic wetness index, distance to river, distance to road, distance to fault, normalized difference vegetation index and plan curvature were considered within a geographic information system (GIS). After achieving the optimal structure of the multilayer perceptron neural network, the PSO algorithm was applied to improve its efficiency. The landslide susceptibility maps were generated in a GIS environment and area under the curve (AUC) criterion was used to assess the integrity of employed predictive models. The results showed that after applying the PSO algorithm, AUC experiences a significant increase from 0.765 to 0.825 in the validation phase. Moreover, respective AUCs of 0.812 and 0.828 obtained for the training phase of ANN and PSO-ANN reveal the efficiency of the proposed algorithm in improving the ANN accuracy.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/19475705.2019.1615005</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-7849-9951</orcidid><orcidid>https://orcid.org/0000-0002-5625-1437</orcidid><orcidid>https://orcid.org/0000-0002-8576-7096</orcidid><orcidid>https://orcid.org/0000-0001-6122-8314</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1947-5705
ispartof Geomatics, natural hazards and risk, 2019-01, Vol.10 (1), p.1750-1771
issn 1947-5705
1947-5713
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ebcf01a588e9485c83082a23afffabba
source Taylor & Francis_OA刊
subjects Acceleration
Algorithms
Artificial neural network
Artificial neural networks
Distance
earthquake
Earthquakes
Elevation
Geographic information systems
Geographical information systems
GIS
hybrid algorithm
Hydrology
Information systems
landslide assessment
Landslides
Lithology
Ludian county
Multilayer perceptrons
Neural networks
Normalized difference vegetative index
Optimization techniques
Particle swarm optimization
Prediction models
Remote sensing
Rivers
Seismic activity
Seismic response
Slopes
Training
Vegetation index
Wetness index
title A particle-based optimization of artificial neural network for earthquake-induced landslide assessment in Ludian county, China
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20particle-based%20optimization%20of%20artificial%20neural%20network%20for%20earthquake-induced%20landslide%20assessment%20in%20Ludian%20county,%20China&rft.jtitle=Geomatics,%20natural%20hazards%20and%20risk&rft.au=Xi,%20Wenfei&rft.date=2019-01-01&rft.volume=10&rft.issue=1&rft.spage=1750&rft.epage=1771&rft.pages=1750-1771&rft.issn=1947-5705&rft.eissn=1947-5713&rft_id=info:doi/10.1080/19475705.2019.1615005&rft_dat=%3Cproquest_doaj_%3E2328367984%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-e0c2ad5f7407c52ea3f976cc86c95aaa73432ab2a564f9938ad37c5f3d5dda713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2328367984&rft_id=info:pmid/&rfr_iscdi=true