Loading…
A particle-based optimization of artificial neural network for earthquake-induced landslide assessment in Ludian county, China
The focal point of this study is to assess the efficacy of a state-of-the-art optimization technique namely, particle swarm optimization (PSO) for enhancing the performance of the artificial neural network (ANN) in modeling the seismic landslides at Ludian districts, China. Twelve geological and hyd...
Saved in:
Published in: | Geomatics, natural hazards and risk natural hazards and risk, 2019-01, Vol.10 (1), p.1750-1771 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-e0c2ad5f7407c52ea3f976cc86c95aaa73432ab2a564f9938ad37c5f3d5dda713 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-e0c2ad5f7407c52ea3f976cc86c95aaa73432ab2a564f9938ad37c5f3d5dda713 |
container_end_page | 1771 |
container_issue | 1 |
container_start_page | 1750 |
container_title | Geomatics, natural hazards and risk |
container_volume | 10 |
creator | Xi, Wenfei Li, Guozhu Moayedi, Hossein Nguyen, Hoang |
description | The focal point of this study is to assess the efficacy of a state-of-the-art optimization technique namely, particle swarm optimization (PSO) for enhancing the performance of the artificial neural network (ANN) in modeling the seismic landslides at Ludian districts, China. Twelve geological and hydrological landslide-conditioning factors namely, elevation, lithology, slope degree, slope aspect, stream power index, peak ground acceleration, topographic wetness index, distance to river, distance to road, distance to fault, normalized difference vegetation index and plan curvature were considered within a geographic information system (GIS). After achieving the optimal structure of the multilayer perceptron neural network, the PSO algorithm was applied to improve its efficiency. The landslide susceptibility maps were generated in a GIS environment and area under the curve (AUC) criterion was used to assess the integrity of employed predictive models. The results showed that after applying the PSO algorithm, AUC experiences a significant increase from 0.765 to 0.825 in the validation phase. Moreover, respective AUCs of 0.812 and 0.828 obtained for the training phase of ANN and PSO-ANN reveal the efficiency of the proposed algorithm in improving the ANN accuracy. |
doi_str_mv | 10.1080/19475705.2019.1615005 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ebcf01a588e9485c83082a23afffabba</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ebcf01a588e9485c83082a23afffabba</doaj_id><sourcerecordid>2328367984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-e0c2ad5f7407c52ea3f976cc86c95aaa73432ab2a564f9938ad37c5f3d5dda713</originalsourceid><addsrcrecordid>eNp9kUtPGzEUhUdVkYooPwHJUrdM8GM89uxAUSlIkdjA2rrjR3GY2MH2qAqL_nYckrKsN9e699zP1jlNc0HwgmCJr8jQCS4wX1BMhgXpCceYf2lO9_2WC8K-ft4x_9ac57zG9TAqBe5Om783aAupeD3ZdoRsDYrb4jf-DYqPAUWH9lPntYcJBTunj1L-xPSCXEzI1vHz6wwvtvXBzLoCJggmT95YBDnbnDc2FOQDWs3GQ0A6zqHsLtHy2Qf43pw4mLI9P9az5un25-Pyrl09_Lpf3qxa3XFSWos1BcOd6LDQnFpgbhC91rLXAwcAwTpGYaTA-84NA5NgWBU6ZrgxUE04a-4PXBNhrbbJbyDtVASvPhox_VZHF5QdtcMEuJR26CTXkmFJgTJwzsE4QmX9OLC2Kb7ONhe1jnMK9fuKVltZLwbZVRU_qHSKOSfrPl8lWO2TU_-SU_vk1DG5und92POh-ruB6vRkVIHdFJNLELTPiv0f8Q63v6Iq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328367984</pqid></control><display><type>article</type><title>A particle-based optimization of artificial neural network for earthquake-induced landslide assessment in Ludian county, China</title><source>Taylor & Francis_OA刊</source><creator>Xi, Wenfei ; Li, Guozhu ; Moayedi, Hossein ; Nguyen, Hoang</creator><creatorcontrib>Xi, Wenfei ; Li, Guozhu ; Moayedi, Hossein ; Nguyen, Hoang</creatorcontrib><description>The focal point of this study is to assess the efficacy of a state-of-the-art optimization technique namely, particle swarm optimization (PSO) for enhancing the performance of the artificial neural network (ANN) in modeling the seismic landslides at Ludian districts, China. Twelve geological and hydrological landslide-conditioning factors namely, elevation, lithology, slope degree, slope aspect, stream power index, peak ground acceleration, topographic wetness index, distance to river, distance to road, distance to fault, normalized difference vegetation index and plan curvature were considered within a geographic information system (GIS). After achieving the optimal structure of the multilayer perceptron neural network, the PSO algorithm was applied to improve its efficiency. The landslide susceptibility maps were generated in a GIS environment and area under the curve (AUC) criterion was used to assess the integrity of employed predictive models. The results showed that after applying the PSO algorithm, AUC experiences a significant increase from 0.765 to 0.825 in the validation phase. Moreover, respective AUCs of 0.812 and 0.828 obtained for the training phase of ANN and PSO-ANN reveal the efficiency of the proposed algorithm in improving the ANN accuracy.</description><identifier>ISSN: 1947-5705</identifier><identifier>EISSN: 1947-5713</identifier><identifier>DOI: 10.1080/19475705.2019.1615005</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Acceleration ; Algorithms ; Artificial neural network ; Artificial neural networks ; Distance ; earthquake ; Earthquakes ; Elevation ; Geographic information systems ; Geographical information systems ; GIS ; hybrid algorithm ; Hydrology ; Information systems ; landslide assessment ; Landslides ; Lithology ; Ludian county ; Multilayer perceptrons ; Neural networks ; Normalized difference vegetative index ; Optimization techniques ; Particle swarm optimization ; Prediction models ; Remote sensing ; Rivers ; Seismic activity ; Seismic response ; Slopes ; Training ; Vegetation index ; Wetness index</subject><ispartof>Geomatics, natural hazards and risk, 2019-01, Vol.10 (1), p.1750-1771</ispartof><rights>2019 The Author(s). Published by Informa UK Limited Trading as Taylor & Francis Group. 2019</rights><rights>2019 The Author(s). Published by Informa UK Limited Trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-e0c2ad5f7407c52ea3f976cc86c95aaa73432ab2a564f9938ad37c5f3d5dda713</citedby><cites>FETCH-LOGICAL-c451t-e0c2ad5f7407c52ea3f976cc86c95aaa73432ab2a564f9938ad37c5f3d5dda713</cites><orcidid>0000-0002-7849-9951 ; 0000-0002-5625-1437 ; 0000-0002-8576-7096 ; 0000-0001-6122-8314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/19475705.2019.1615005$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/19475705.2019.1615005$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27481,27903,27904,59119,59120</link.rule.ids></links><search><creatorcontrib>Xi, Wenfei</creatorcontrib><creatorcontrib>Li, Guozhu</creatorcontrib><creatorcontrib>Moayedi, Hossein</creatorcontrib><creatorcontrib>Nguyen, Hoang</creatorcontrib><title>A particle-based optimization of artificial neural network for earthquake-induced landslide assessment in Ludian county, China</title><title>Geomatics, natural hazards and risk</title><description>The focal point of this study is to assess the efficacy of a state-of-the-art optimization technique namely, particle swarm optimization (PSO) for enhancing the performance of the artificial neural network (ANN) in modeling the seismic landslides at Ludian districts, China. Twelve geological and hydrological landslide-conditioning factors namely, elevation, lithology, slope degree, slope aspect, stream power index, peak ground acceleration, topographic wetness index, distance to river, distance to road, distance to fault, normalized difference vegetation index and plan curvature were considered within a geographic information system (GIS). After achieving the optimal structure of the multilayer perceptron neural network, the PSO algorithm was applied to improve its efficiency. The landslide susceptibility maps were generated in a GIS environment and area under the curve (AUC) criterion was used to assess the integrity of employed predictive models. The results showed that after applying the PSO algorithm, AUC experiences a significant increase from 0.765 to 0.825 in the validation phase. Moreover, respective AUCs of 0.812 and 0.828 obtained for the training phase of ANN and PSO-ANN reveal the efficiency of the proposed algorithm in improving the ANN accuracy.</description><subject>Acceleration</subject><subject>Algorithms</subject><subject>Artificial neural network</subject><subject>Artificial neural networks</subject><subject>Distance</subject><subject>earthquake</subject><subject>Earthquakes</subject><subject>Elevation</subject><subject>Geographic information systems</subject><subject>Geographical information systems</subject><subject>GIS</subject><subject>hybrid algorithm</subject><subject>Hydrology</subject><subject>Information systems</subject><subject>landslide assessment</subject><subject>Landslides</subject><subject>Lithology</subject><subject>Ludian county</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Normalized difference vegetative index</subject><subject>Optimization techniques</subject><subject>Particle swarm optimization</subject><subject>Prediction models</subject><subject>Remote sensing</subject><subject>Rivers</subject><subject>Seismic activity</subject><subject>Seismic response</subject><subject>Slopes</subject><subject>Training</subject><subject>Vegetation index</subject><subject>Wetness index</subject><issn>1947-5705</issn><issn>1947-5713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtPGzEUhUdVkYooPwHJUrdM8GM89uxAUSlIkdjA2rrjR3GY2MH2qAqL_nYckrKsN9e699zP1jlNc0HwgmCJr8jQCS4wX1BMhgXpCceYf2lO9_2WC8K-ft4x_9ac57zG9TAqBe5Om783aAupeD3ZdoRsDYrb4jf-DYqPAUWH9lPntYcJBTunj1L-xPSCXEzI1vHz6wwvtvXBzLoCJggmT95YBDnbnDc2FOQDWs3GQ0A6zqHsLtHy2Qf43pw4mLI9P9az5un25-Pyrl09_Lpf3qxa3XFSWos1BcOd6LDQnFpgbhC91rLXAwcAwTpGYaTA-84NA5NgWBU6ZrgxUE04a-4PXBNhrbbJbyDtVASvPhox_VZHF5QdtcMEuJR26CTXkmFJgTJwzsE4QmX9OLC2Kb7ONhe1jnMK9fuKVltZLwbZVRU_qHSKOSfrPl8lWO2TU_-SU_vk1DG5und92POh-ruB6vRkVIHdFJNLELTPiv0f8Q63v6Iq</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Xi, Wenfei</creator><creator>Li, Guozhu</creator><creator>Moayedi, Hossein</creator><creator>Nguyen, Hoang</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7849-9951</orcidid><orcidid>https://orcid.org/0000-0002-5625-1437</orcidid><orcidid>https://orcid.org/0000-0002-8576-7096</orcidid><orcidid>https://orcid.org/0000-0001-6122-8314</orcidid></search><sort><creationdate>20190101</creationdate><title>A particle-based optimization of artificial neural network for earthquake-induced landslide assessment in Ludian county, China</title><author>Xi, Wenfei ; Li, Guozhu ; Moayedi, Hossein ; Nguyen, Hoang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-e0c2ad5f7407c52ea3f976cc86c95aaa73432ab2a564f9938ad37c5f3d5dda713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Algorithms</topic><topic>Artificial neural network</topic><topic>Artificial neural networks</topic><topic>Distance</topic><topic>earthquake</topic><topic>Earthquakes</topic><topic>Elevation</topic><topic>Geographic information systems</topic><topic>Geographical information systems</topic><topic>GIS</topic><topic>hybrid algorithm</topic><topic>Hydrology</topic><topic>Information systems</topic><topic>landslide assessment</topic><topic>Landslides</topic><topic>Lithology</topic><topic>Ludian county</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Normalized difference vegetative index</topic><topic>Optimization techniques</topic><topic>Particle swarm optimization</topic><topic>Prediction models</topic><topic>Remote sensing</topic><topic>Rivers</topic><topic>Seismic activity</topic><topic>Seismic response</topic><topic>Slopes</topic><topic>Training</topic><topic>Vegetation index</topic><topic>Wetness index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xi, Wenfei</creatorcontrib><creatorcontrib>Li, Guozhu</creatorcontrib><creatorcontrib>Moayedi, Hossein</creatorcontrib><creatorcontrib>Nguyen, Hoang</creatorcontrib><collection>Taylor & Francis_OA刊</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>Directory of Open Access Journals</collection><jtitle>Geomatics, natural hazards and risk</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xi, Wenfei</au><au>Li, Guozhu</au><au>Moayedi, Hossein</au><au>Nguyen, Hoang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A particle-based optimization of artificial neural network for earthquake-induced landslide assessment in Ludian county, China</atitle><jtitle>Geomatics, natural hazards and risk</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>1750</spage><epage>1771</epage><pages>1750-1771</pages><issn>1947-5705</issn><eissn>1947-5713</eissn><abstract>The focal point of this study is to assess the efficacy of a state-of-the-art optimization technique namely, particle swarm optimization (PSO) for enhancing the performance of the artificial neural network (ANN) in modeling the seismic landslides at Ludian districts, China. Twelve geological and hydrological landslide-conditioning factors namely, elevation, lithology, slope degree, slope aspect, stream power index, peak ground acceleration, topographic wetness index, distance to river, distance to road, distance to fault, normalized difference vegetation index and plan curvature were considered within a geographic information system (GIS). After achieving the optimal structure of the multilayer perceptron neural network, the PSO algorithm was applied to improve its efficiency. The landslide susceptibility maps were generated in a GIS environment and area under the curve (AUC) criterion was used to assess the integrity of employed predictive models. The results showed that after applying the PSO algorithm, AUC experiences a significant increase from 0.765 to 0.825 in the validation phase. Moreover, respective AUCs of 0.812 and 0.828 obtained for the training phase of ANN and PSO-ANN reveal the efficiency of the proposed algorithm in improving the ANN accuracy.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/19475705.2019.1615005</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-7849-9951</orcidid><orcidid>https://orcid.org/0000-0002-5625-1437</orcidid><orcidid>https://orcid.org/0000-0002-8576-7096</orcidid><orcidid>https://orcid.org/0000-0001-6122-8314</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1947-5705 |
ispartof | Geomatics, natural hazards and risk, 2019-01, Vol.10 (1), p.1750-1771 |
issn | 1947-5705 1947-5713 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ebcf01a588e9485c83082a23afffabba |
source | Taylor & Francis_OA刊 |
subjects | Acceleration Algorithms Artificial neural network Artificial neural networks Distance earthquake Earthquakes Elevation Geographic information systems Geographical information systems GIS hybrid algorithm Hydrology Information systems landslide assessment Landslides Lithology Ludian county Multilayer perceptrons Neural networks Normalized difference vegetative index Optimization techniques Particle swarm optimization Prediction models Remote sensing Rivers Seismic activity Seismic response Slopes Training Vegetation index Wetness index |
title | A particle-based optimization of artificial neural network for earthquake-induced landslide assessment in Ludian county, China |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20particle-based%20optimization%20of%20artificial%20neural%20network%20for%20earthquake-induced%20landslide%20assessment%20in%20Ludian%20county,%20China&rft.jtitle=Geomatics,%20natural%20hazards%20and%20risk&rft.au=Xi,%20Wenfei&rft.date=2019-01-01&rft.volume=10&rft.issue=1&rft.spage=1750&rft.epage=1771&rft.pages=1750-1771&rft.issn=1947-5705&rft.eissn=1947-5713&rft_id=info:doi/10.1080/19475705.2019.1615005&rft_dat=%3Cproquest_doaj_%3E2328367984%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-e0c2ad5f7407c52ea3f976cc86c95aaa73432ab2a564f9938ad37c5f3d5dda713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2328367984&rft_id=info:pmid/&rfr_iscdi=true |