Loading…

Symmetry Analysis of the 3D Boundary-Layer Flow of a Non-Newtonian Fluid

This study investigates the three-dimensional, steady, laminar boundary-layer equations of a non-Newtonian fluid over a flat plate in the absence of body forces. The classical boundary-layer theory, introduced by Prandtl in 1904, suggests that fluid flows past a solid surface can be divided into two...

Full description

Saved in:
Bibliographic Details
Published in:AppliedMath 2024-12, Vol.4 (4), p.1588-1599
Main Authors: El Saheli, Ali, Zogheib, Bashar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c238t-176ba0c10a67a4b41b5496cce65519d04d1d8373b0e33586319d08bfb661ef543
container_end_page 1599
container_issue 4
container_start_page 1588
container_title AppliedMath
container_volume 4
creator El Saheli, Ali
Zogheib, Bashar
description This study investigates the three-dimensional, steady, laminar boundary-layer equations of a non-Newtonian fluid over a flat plate in the absence of body forces. The classical boundary-layer theory, introduced by Prandtl in 1904, suggests that fluid flows past a solid surface can be divided into two regions: a thin boundary layer near the surface, where steep velocity gradients and significant frictional effects dominate, and the outer region, where friction is negligible. Within the boundary layer, the velocity increases sharply from zero at the surface to the freestream value at the outer edge. The boundary-layer approximation significantly simplifies the Navier–Stokes equations within the boundary layer, while outside this layer, the flow is considered inviscid, resulting in even simpler equations. The viscoelastic properties of the fluid are modeled using the Rivlin–Ericksen tensors. Lie group analysis is applied to reduce the resulting third-order nonlinear system of partial differential equations to a system of ordinary differential equations. Finally, we determine the admissible forms of the freestream velocities in the x- and z-directions.
doi_str_mv 10.3390/appliedmath4040084
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ebd0a8f706394fd5a2c92ec7c049027c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ebd0a8f706394fd5a2c92ec7c049027c</doaj_id><sourcerecordid>oai_doaj_org_article_ebd0a8f706394fd5a2c92ec7c049027c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-176ba0c10a67a4b41b5496cce65519d04d1d8373b0e33586319d08bfb661ef543</originalsourceid><addsrcrecordid>eNplkM1Kw0AUhQdRsNS-gKu8QPRO5n9Zq7WFUhfqOtzMTGxKkimTlJK3tz8igqtz-S58HA4h9xQeGDPwiLtdXXnXYL_hwAE0vyKjTCqWGgPm-s99SyZdtwWATAvFlB6RxfvQNL6PQzJtsR66qktCmfQbn7Dn5CnsW4dxSFc4-JjM63A4fTFZhzZd-0Mf2grbI99X7o7clFh3fvKTY_I5f_mYLdLV2-tyNl2lNmO6T6mSBYKlgFIhLzgtBDfSWi-FoMYBd9RpplgBnjGhJTtBXZSFlNSXgrMxWV68LuA238WqORbMA1b5GYT4lWPsK1v73BcOUJcKJDO8dAIzazJvlQVuIFP26MouLhtD10Vf_voo5Kdp8__Tsm9o3m3j</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Symmetry Analysis of the 3D Boundary-Layer Flow of a Non-Newtonian Fluid</title><source>DOAJ Directory of Open Access Journals</source><creator>El Saheli, Ali ; Zogheib, Bashar</creator><creatorcontrib>El Saheli, Ali ; Zogheib, Bashar</creatorcontrib><description>This study investigates the three-dimensional, steady, laminar boundary-layer equations of a non-Newtonian fluid over a flat plate in the absence of body forces. The classical boundary-layer theory, introduced by Prandtl in 1904, suggests that fluid flows past a solid surface can be divided into two regions: a thin boundary layer near the surface, where steep velocity gradients and significant frictional effects dominate, and the outer region, where friction is negligible. Within the boundary layer, the velocity increases sharply from zero at the surface to the freestream value at the outer edge. The boundary-layer approximation significantly simplifies the Navier–Stokes equations within the boundary layer, while outside this layer, the flow is considered inviscid, resulting in even simpler equations. The viscoelastic properties of the fluid are modeled using the Rivlin–Ericksen tensors. Lie group analysis is applied to reduce the resulting third-order nonlinear system of partial differential equations to a system of ordinary differential equations. Finally, we determine the admissible forms of the freestream velocities in the x- and z-directions.</description><identifier>ISSN: 2673-9909</identifier><identifier>EISSN: 2673-9909</identifier><identifier>DOI: 10.3390/appliedmath4040084</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>laminar boundary layers ; non-Newtonian fluid ; symmetry analysis</subject><ispartof>AppliedMath, 2024-12, Vol.4 (4), p.1588-1599</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-176ba0c10a67a4b41b5496cce65519d04d1d8373b0e33586319d08bfb661ef543</cites><orcidid>0000-0002-9139-3019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>El Saheli, Ali</creatorcontrib><creatorcontrib>Zogheib, Bashar</creatorcontrib><title>Symmetry Analysis of the 3D Boundary-Layer Flow of a Non-Newtonian Fluid</title><title>AppliedMath</title><description>This study investigates the three-dimensional, steady, laminar boundary-layer equations of a non-Newtonian fluid over a flat plate in the absence of body forces. The classical boundary-layer theory, introduced by Prandtl in 1904, suggests that fluid flows past a solid surface can be divided into two regions: a thin boundary layer near the surface, where steep velocity gradients and significant frictional effects dominate, and the outer region, where friction is negligible. Within the boundary layer, the velocity increases sharply from zero at the surface to the freestream value at the outer edge. The boundary-layer approximation significantly simplifies the Navier–Stokes equations within the boundary layer, while outside this layer, the flow is considered inviscid, resulting in even simpler equations. The viscoelastic properties of the fluid are modeled using the Rivlin–Ericksen tensors. Lie group analysis is applied to reduce the resulting third-order nonlinear system of partial differential equations to a system of ordinary differential equations. Finally, we determine the admissible forms of the freestream velocities in the x- and z-directions.</description><subject>laminar boundary layers</subject><subject>non-Newtonian fluid</subject><subject>symmetry analysis</subject><issn>2673-9909</issn><issn>2673-9909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkM1Kw0AUhQdRsNS-gKu8QPRO5n9Zq7WFUhfqOtzMTGxKkimTlJK3tz8igqtz-S58HA4h9xQeGDPwiLtdXXnXYL_hwAE0vyKjTCqWGgPm-s99SyZdtwWATAvFlB6RxfvQNL6PQzJtsR66qktCmfQbn7Dn5CnsW4dxSFc4-JjM63A4fTFZhzZd-0Mf2grbI99X7o7clFh3fvKTY_I5f_mYLdLV2-tyNl2lNmO6T6mSBYKlgFIhLzgtBDfSWi-FoMYBd9RpplgBnjGhJTtBXZSFlNSXgrMxWV68LuA238WqORbMA1b5GYT4lWPsK1v73BcOUJcKJDO8dAIzazJvlQVuIFP26MouLhtD10Vf_voo5Kdp8__Tsm9o3m3j</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>El Saheli, Ali</creator><creator>Zogheib, Bashar</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9139-3019</orcidid></search><sort><creationdate>20241201</creationdate><title>Symmetry Analysis of the 3D Boundary-Layer Flow of a Non-Newtonian Fluid</title><author>El Saheli, Ali ; Zogheib, Bashar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-176ba0c10a67a4b41b5496cce65519d04d1d8373b0e33586319d08bfb661ef543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>laminar boundary layers</topic><topic>non-Newtonian fluid</topic><topic>symmetry analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Saheli, Ali</creatorcontrib><creatorcontrib>Zogheib, Bashar</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AppliedMath</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Saheli, Ali</au><au>Zogheib, Bashar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry Analysis of the 3D Boundary-Layer Flow of a Non-Newtonian Fluid</atitle><jtitle>AppliedMath</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>4</volume><issue>4</issue><spage>1588</spage><epage>1599</epage><pages>1588-1599</pages><issn>2673-9909</issn><eissn>2673-9909</eissn><abstract>This study investigates the three-dimensional, steady, laminar boundary-layer equations of a non-Newtonian fluid over a flat plate in the absence of body forces. The classical boundary-layer theory, introduced by Prandtl in 1904, suggests that fluid flows past a solid surface can be divided into two regions: a thin boundary layer near the surface, where steep velocity gradients and significant frictional effects dominate, and the outer region, where friction is negligible. Within the boundary layer, the velocity increases sharply from zero at the surface to the freestream value at the outer edge. The boundary-layer approximation significantly simplifies the Navier–Stokes equations within the boundary layer, while outside this layer, the flow is considered inviscid, resulting in even simpler equations. The viscoelastic properties of the fluid are modeled using the Rivlin–Ericksen tensors. Lie group analysis is applied to reduce the resulting third-order nonlinear system of partial differential equations to a system of ordinary differential equations. Finally, we determine the admissible forms of the freestream velocities in the x- and z-directions.</abstract><pub>MDPI AG</pub><doi>10.3390/appliedmath4040084</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9139-3019</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2673-9909
ispartof AppliedMath, 2024-12, Vol.4 (4), p.1588-1599
issn 2673-9909
2673-9909
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ebd0a8f706394fd5a2c92ec7c049027c
source DOAJ Directory of Open Access Journals
subjects laminar boundary layers
non-Newtonian fluid
symmetry analysis
title Symmetry Analysis of the 3D Boundary-Layer Flow of a Non-Newtonian Fluid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A43%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry%20Analysis%20of%20the%203D%20Boundary-Layer%20Flow%20of%20a%20Non-Newtonian%20Fluid&rft.jtitle=AppliedMath&rft.au=El%20Saheli,%20Ali&rft.date=2024-12-01&rft.volume=4&rft.issue=4&rft.spage=1588&rft.epage=1599&rft.pages=1588-1599&rft.issn=2673-9909&rft.eissn=2673-9909&rft_id=info:doi/10.3390/appliedmath4040084&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_ebd0a8f706394fd5a2c92ec7c049027c%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c238t-176ba0c10a67a4b41b5496cce65519d04d1d8373b0e33586319d08bfb661ef543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true