Loading…
Symmetry Analysis of the 3D Boundary-Layer Flow of a Non-Newtonian Fluid
This study investigates the three-dimensional, steady, laminar boundary-layer equations of a non-Newtonian fluid over a flat plate in the absence of body forces. The classical boundary-layer theory, introduced by Prandtl in 1904, suggests that fluid flows past a solid surface can be divided into two...
Saved in:
Published in: | AppliedMath 2024-12, Vol.4 (4), p.1588-1599 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c238t-176ba0c10a67a4b41b5496cce65519d04d1d8373b0e33586319d08bfb661ef543 |
container_end_page | 1599 |
container_issue | 4 |
container_start_page | 1588 |
container_title | AppliedMath |
container_volume | 4 |
creator | El Saheli, Ali Zogheib, Bashar |
description | This study investigates the three-dimensional, steady, laminar boundary-layer equations of a non-Newtonian fluid over a flat plate in the absence of body forces. The classical boundary-layer theory, introduced by Prandtl in 1904, suggests that fluid flows past a solid surface can be divided into two regions: a thin boundary layer near the surface, where steep velocity gradients and significant frictional effects dominate, and the outer region, where friction is negligible. Within the boundary layer, the velocity increases sharply from zero at the surface to the freestream value at the outer edge. The boundary-layer approximation significantly simplifies the Navier–Stokes equations within the boundary layer, while outside this layer, the flow is considered inviscid, resulting in even simpler equations. The viscoelastic properties of the fluid are modeled using the Rivlin–Ericksen tensors. Lie group analysis is applied to reduce the resulting third-order nonlinear system of partial differential equations to a system of ordinary differential equations. Finally, we determine the admissible forms of the freestream velocities in the x- and z-directions. |
doi_str_mv | 10.3390/appliedmath4040084 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ebd0a8f706394fd5a2c92ec7c049027c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ebd0a8f706394fd5a2c92ec7c049027c</doaj_id><sourcerecordid>oai_doaj_org_article_ebd0a8f706394fd5a2c92ec7c049027c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-176ba0c10a67a4b41b5496cce65519d04d1d8373b0e33586319d08bfb661ef543</originalsourceid><addsrcrecordid>eNplkM1Kw0AUhQdRsNS-gKu8QPRO5n9Zq7WFUhfqOtzMTGxKkimTlJK3tz8igqtz-S58HA4h9xQeGDPwiLtdXXnXYL_hwAE0vyKjTCqWGgPm-s99SyZdtwWATAvFlB6RxfvQNL6PQzJtsR66qktCmfQbn7Dn5CnsW4dxSFc4-JjM63A4fTFZhzZd-0Mf2grbI99X7o7clFh3fvKTY_I5f_mYLdLV2-tyNl2lNmO6T6mSBYKlgFIhLzgtBDfSWi-FoMYBd9RpplgBnjGhJTtBXZSFlNSXgrMxWV68LuA238WqORbMA1b5GYT4lWPsK1v73BcOUJcKJDO8dAIzazJvlQVuIFP26MouLhtD10Vf_voo5Kdp8__Tsm9o3m3j</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Symmetry Analysis of the 3D Boundary-Layer Flow of a Non-Newtonian Fluid</title><source>DOAJ Directory of Open Access Journals</source><creator>El Saheli, Ali ; Zogheib, Bashar</creator><creatorcontrib>El Saheli, Ali ; Zogheib, Bashar</creatorcontrib><description>This study investigates the three-dimensional, steady, laminar boundary-layer equations of a non-Newtonian fluid over a flat plate in the absence of body forces. The classical boundary-layer theory, introduced by Prandtl in 1904, suggests that fluid flows past a solid surface can be divided into two regions: a thin boundary layer near the surface, where steep velocity gradients and significant frictional effects dominate, and the outer region, where friction is negligible. Within the boundary layer, the velocity increases sharply from zero at the surface to the freestream value at the outer edge. The boundary-layer approximation significantly simplifies the Navier–Stokes equations within the boundary layer, while outside this layer, the flow is considered inviscid, resulting in even simpler equations. The viscoelastic properties of the fluid are modeled using the Rivlin–Ericksen tensors. Lie group analysis is applied to reduce the resulting third-order nonlinear system of partial differential equations to a system of ordinary differential equations. Finally, we determine the admissible forms of the freestream velocities in the x- and z-directions.</description><identifier>ISSN: 2673-9909</identifier><identifier>EISSN: 2673-9909</identifier><identifier>DOI: 10.3390/appliedmath4040084</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>laminar boundary layers ; non-Newtonian fluid ; symmetry analysis</subject><ispartof>AppliedMath, 2024-12, Vol.4 (4), p.1588-1599</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-176ba0c10a67a4b41b5496cce65519d04d1d8373b0e33586319d08bfb661ef543</cites><orcidid>0000-0002-9139-3019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>El Saheli, Ali</creatorcontrib><creatorcontrib>Zogheib, Bashar</creatorcontrib><title>Symmetry Analysis of the 3D Boundary-Layer Flow of a Non-Newtonian Fluid</title><title>AppliedMath</title><description>This study investigates the three-dimensional, steady, laminar boundary-layer equations of a non-Newtonian fluid over a flat plate in the absence of body forces. The classical boundary-layer theory, introduced by Prandtl in 1904, suggests that fluid flows past a solid surface can be divided into two regions: a thin boundary layer near the surface, where steep velocity gradients and significant frictional effects dominate, and the outer region, where friction is negligible. Within the boundary layer, the velocity increases sharply from zero at the surface to the freestream value at the outer edge. The boundary-layer approximation significantly simplifies the Navier–Stokes equations within the boundary layer, while outside this layer, the flow is considered inviscid, resulting in even simpler equations. The viscoelastic properties of the fluid are modeled using the Rivlin–Ericksen tensors. Lie group analysis is applied to reduce the resulting third-order nonlinear system of partial differential equations to a system of ordinary differential equations. Finally, we determine the admissible forms of the freestream velocities in the x- and z-directions.</description><subject>laminar boundary layers</subject><subject>non-Newtonian fluid</subject><subject>symmetry analysis</subject><issn>2673-9909</issn><issn>2673-9909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkM1Kw0AUhQdRsNS-gKu8QPRO5n9Zq7WFUhfqOtzMTGxKkimTlJK3tz8igqtz-S58HA4h9xQeGDPwiLtdXXnXYL_hwAE0vyKjTCqWGgPm-s99SyZdtwWATAvFlB6RxfvQNL6PQzJtsR66qktCmfQbn7Dn5CnsW4dxSFc4-JjM63A4fTFZhzZd-0Mf2grbI99X7o7clFh3fvKTY_I5f_mYLdLV2-tyNl2lNmO6T6mSBYKlgFIhLzgtBDfSWi-FoMYBd9RpplgBnjGhJTtBXZSFlNSXgrMxWV68LuA238WqORbMA1b5GYT4lWPsK1v73BcOUJcKJDO8dAIzazJvlQVuIFP26MouLhtD10Vf_voo5Kdp8__Tsm9o3m3j</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>El Saheli, Ali</creator><creator>Zogheib, Bashar</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9139-3019</orcidid></search><sort><creationdate>20241201</creationdate><title>Symmetry Analysis of the 3D Boundary-Layer Flow of a Non-Newtonian Fluid</title><author>El Saheli, Ali ; Zogheib, Bashar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-176ba0c10a67a4b41b5496cce65519d04d1d8373b0e33586319d08bfb661ef543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>laminar boundary layers</topic><topic>non-Newtonian fluid</topic><topic>symmetry analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Saheli, Ali</creatorcontrib><creatorcontrib>Zogheib, Bashar</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AppliedMath</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Saheli, Ali</au><au>Zogheib, Bashar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry Analysis of the 3D Boundary-Layer Flow of a Non-Newtonian Fluid</atitle><jtitle>AppliedMath</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>4</volume><issue>4</issue><spage>1588</spage><epage>1599</epage><pages>1588-1599</pages><issn>2673-9909</issn><eissn>2673-9909</eissn><abstract>This study investigates the three-dimensional, steady, laminar boundary-layer equations of a non-Newtonian fluid over a flat plate in the absence of body forces. The classical boundary-layer theory, introduced by Prandtl in 1904, suggests that fluid flows past a solid surface can be divided into two regions: a thin boundary layer near the surface, where steep velocity gradients and significant frictional effects dominate, and the outer region, where friction is negligible. Within the boundary layer, the velocity increases sharply from zero at the surface to the freestream value at the outer edge. The boundary-layer approximation significantly simplifies the Navier–Stokes equations within the boundary layer, while outside this layer, the flow is considered inviscid, resulting in even simpler equations. The viscoelastic properties of the fluid are modeled using the Rivlin–Ericksen tensors. Lie group analysis is applied to reduce the resulting third-order nonlinear system of partial differential equations to a system of ordinary differential equations. Finally, we determine the admissible forms of the freestream velocities in the x- and z-directions.</abstract><pub>MDPI AG</pub><doi>10.3390/appliedmath4040084</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9139-3019</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2673-9909 |
ispartof | AppliedMath, 2024-12, Vol.4 (4), p.1588-1599 |
issn | 2673-9909 2673-9909 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ebd0a8f706394fd5a2c92ec7c049027c |
source | DOAJ Directory of Open Access Journals |
subjects | laminar boundary layers non-Newtonian fluid symmetry analysis |
title | Symmetry Analysis of the 3D Boundary-Layer Flow of a Non-Newtonian Fluid |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A43%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry%20Analysis%20of%20the%203D%20Boundary-Layer%20Flow%20of%20a%20Non-Newtonian%20Fluid&rft.jtitle=AppliedMath&rft.au=El%20Saheli,%20Ali&rft.date=2024-12-01&rft.volume=4&rft.issue=4&rft.spage=1588&rft.epage=1599&rft.pages=1588-1599&rft.issn=2673-9909&rft.eissn=2673-9909&rft_id=info:doi/10.3390/appliedmath4040084&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_ebd0a8f706394fd5a2c92ec7c049027c%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c238t-176ba0c10a67a4b41b5496cce65519d04d1d8373b0e33586319d08bfb661ef543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |