Loading…

Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1

ENPP1 (Ecto-nucleotide pyrophosphatase phosphodiesterase 1), a type II transmembrane glycoprotein, hydrolyzes ATP to produce AMP and diphosphate, thereby inhibiting bone mineralization. A recent study showed that ENPP1 also preferentially hydrolyzes 2′3′-cGAMP (cyclic GMP-AMP) but not its linkage is...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2018-10, Vol.9 (1), p.4424-8, Article 4424
Main Authors: Kato, Kazuki, Nishimasu, Hiroshi, Oikawa, Daisuke, Hirano, Seiichi, Hirano, Hisato, Kasuya, Go, Ishitani, Ryuichiro, Tokunaga, Fuminori, Nureki, Osamu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-9a52c8e20e5d65e20cf69caf8823c80691dd93f573d6881163500449f913562d3
cites cdi_FETCH-LOGICAL-c540t-9a52c8e20e5d65e20cf69caf8823c80691dd93f573d6881163500449f913562d3
container_end_page 8
container_issue 1
container_start_page 4424
container_title Nature communications
container_volume 9
creator Kato, Kazuki
Nishimasu, Hiroshi
Oikawa, Daisuke
Hirano, Seiichi
Hirano, Hisato
Kasuya, Go
Ishitani, Ryuichiro
Tokunaga, Fuminori
Nureki, Osamu
description ENPP1 (Ecto-nucleotide pyrophosphatase phosphodiesterase 1), a type II transmembrane glycoprotein, hydrolyzes ATP to produce AMP and diphosphate, thereby inhibiting bone mineralization. A recent study showed that ENPP1 also preferentially hydrolyzes 2′3′-cGAMP (cyclic GMP-AMP) but not its linkage isomer 3′3′-cGAMP, and negatively regulates the cGAS-STING pathway in the innate immune system. Here, we present the high-resolution crystal structures of ENPP1 in complex with 3′3′-cGAMP and the reaction intermediate pA(3′,5′)pG. The structures revealed that the adenine and guanine bases of the dinucleotides are recognized by nucleotide- and guanine-pockets, respectively. Furthermore, the structures indicate that 2′3′-cGAMP, but not 3′3′-cGAMP, binds to the active site in a conformation suitable for catalysis, thereby explaining the specific degradation of 2′3′-cGAMP by ENPP1. Our findings provide insights into how ENPP1 hydrolyzes both ATP and cGAMP to participate in the two distinct biological processes. Ecto-nucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) is a type II transmembrane glycoprotein that hydrolyzes both ATP and cGAMP. Here the authors present the crystal structures of the extracellular domain of mouse ENPP1 in complex with 3′3′-cGAMP and the reaction intermediate pA(3′,5′)pG and discuss mechanistic implications.
doi_str_mv 10.1038/s41467-018-06922-7
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ebe2302b87a54099b3035e61f4224abe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ebe2302b87a54099b3035e61f4224abe</doaj_id><sourcerecordid>2125305795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-9a52c8e20e5d65e20cf69caf8823c80691dd93f573d6881163500449f913562d3</originalsourceid><addsrcrecordid>eNp9Uktv1DAQthCIVkv_AAcUiQuXtH7HviBVVWkrtQIJOFuO7WS9ysbBdirtv8e76ZMDvsx45ptvngB8RPAUQSLOEkWUNzVEooZcYlw3b8AxhhTVqMHk7Qv9CJyktIHlEYkEpe_BEYGEcUjZMdA_c5xNnqMeKj8m369zKkoOlbk6v_tRWddHbXX2YazaXXVpcqjH2QwuZG9dNe1imNYhTWuddSr_gx6sdym7uLegD-Bdp4fkTh7kCvz-dvnr4rq-_X51c3F-WxtGYa6lZtgIh6FjlrMiTcel0Z0QmBhRWkTWStKxhlguBEKcMAgplZ1EpRdsyQrcLLw26I2aot_quFNBe3UwhNgrHbMvpSvXOkwgbkWjS24p2_08HEcdxZjq1hWurwvXNLdbZ40bcxnQK9LXntGvVR_uFccQNpIUgi8PBDH8mcsw1NYn44ZBjy7MSWGEGYGskaxAP_8D3YQ5jmVUexRtKOdl4SuAF5SJIaXouqdiEFT7g1DLQahyEOpwEKopQZ9etvEU8rj-AiALIBXX2Lv4nPs_tH8B4h3ApQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124746610</pqid></control><display><type>article</type><title>Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kato, Kazuki ; Nishimasu, Hiroshi ; Oikawa, Daisuke ; Hirano, Seiichi ; Hirano, Hisato ; Kasuya, Go ; Ishitani, Ryuichiro ; Tokunaga, Fuminori ; Nureki, Osamu</creator><creatorcontrib>Kato, Kazuki ; Nishimasu, Hiroshi ; Oikawa, Daisuke ; Hirano, Seiichi ; Hirano, Hisato ; Kasuya, Go ; Ishitani, Ryuichiro ; Tokunaga, Fuminori ; Nureki, Osamu</creatorcontrib><description>ENPP1 (Ecto-nucleotide pyrophosphatase phosphodiesterase 1), a type II transmembrane glycoprotein, hydrolyzes ATP to produce AMP and diphosphate, thereby inhibiting bone mineralization. A recent study showed that ENPP1 also preferentially hydrolyzes 2′3′-cGAMP (cyclic GMP-AMP) but not its linkage isomer 3′3′-cGAMP, and negatively regulates the cGAS-STING pathway in the innate immune system. Here, we present the high-resolution crystal structures of ENPP1 in complex with 3′3′-cGAMP and the reaction intermediate pA(3′,5′)pG. The structures revealed that the adenine and guanine bases of the dinucleotides are recognized by nucleotide- and guanine-pockets, respectively. Furthermore, the structures indicate that 2′3′-cGAMP, but not 3′3′-cGAMP, binds to the active site in a conformation suitable for catalysis, thereby explaining the specific degradation of 2′3′-cGAMP by ENPP1. Our findings provide insights into how ENPP1 hydrolyzes both ATP and cGAMP to participate in the two distinct biological processes. Ecto-nucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) is a type II transmembrane glycoprotein that hydrolyzes both ATP and cGAMP. Here the authors present the crystal structures of the extracellular domain of mouse ENPP1 in complex with 3′3′-cGAMP and the reaction intermediate pA(3′,5′)pG and discuss mechanistic implications.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-018-06922-7</identifier><identifier>PMID: 30356045</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/95 ; 631/337 ; 631/45/173 ; 631/535/1266 ; Adenine ; Adenosine ; Adenosine triphosphate ; Adenosine Triphosphate - metabolism ; AMP ; Biological activity ; Catalysis ; Cell Line ; Cell Line, Tumor ; Conformation ; Crystal structure ; Crystallization ; Cyclic GMP ; Degradation ; Glycoproteins ; Guanine ; HEK293 Cells ; Humanities and Social Sciences ; Humans ; Hydrogen bonds ; Immune system ; Innate immunity ; Membrane Proteins - metabolism ; Mineralization ; multidisciplinary ; Nucleotides, Cyclic - chemistry ; Nucleotides, Cyclic - metabolism ; Phosphodiesterase ; Phosphoric Diester Hydrolases - chemistry ; Phosphoric Diester Hydrolases - metabolism ; Protein Structure, Secondary ; Pyrophosphatase ; Pyrophosphatases - chemistry ; Pyrophosphatases - metabolism ; Reaction intermediates ; Science ; Science (multidisciplinary) ; Signal Transduction - physiology</subject><ispartof>Nature communications, 2018-10, Vol.9 (1), p.4424-8, Article 4424</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-9a52c8e20e5d65e20cf69caf8823c80691dd93f573d6881163500449f913562d3</citedby><cites>FETCH-LOGICAL-c540t-9a52c8e20e5d65e20cf69caf8823c80691dd93f573d6881163500449f913562d3</cites><orcidid>0000-0003-1756-5764 ; 0000-0003-1813-7008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2124746610/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2124746610?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30356045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kato, Kazuki</creatorcontrib><creatorcontrib>Nishimasu, Hiroshi</creatorcontrib><creatorcontrib>Oikawa, Daisuke</creatorcontrib><creatorcontrib>Hirano, Seiichi</creatorcontrib><creatorcontrib>Hirano, Hisato</creatorcontrib><creatorcontrib>Kasuya, Go</creatorcontrib><creatorcontrib>Ishitani, Ryuichiro</creatorcontrib><creatorcontrib>Tokunaga, Fuminori</creatorcontrib><creatorcontrib>Nureki, Osamu</creatorcontrib><title>Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>ENPP1 (Ecto-nucleotide pyrophosphatase phosphodiesterase 1), a type II transmembrane glycoprotein, hydrolyzes ATP to produce AMP and diphosphate, thereby inhibiting bone mineralization. A recent study showed that ENPP1 also preferentially hydrolyzes 2′3′-cGAMP (cyclic GMP-AMP) but not its linkage isomer 3′3′-cGAMP, and negatively regulates the cGAS-STING pathway in the innate immune system. Here, we present the high-resolution crystal structures of ENPP1 in complex with 3′3′-cGAMP and the reaction intermediate pA(3′,5′)pG. The structures revealed that the adenine and guanine bases of the dinucleotides are recognized by nucleotide- and guanine-pockets, respectively. Furthermore, the structures indicate that 2′3′-cGAMP, but not 3′3′-cGAMP, binds to the active site in a conformation suitable for catalysis, thereby explaining the specific degradation of 2′3′-cGAMP by ENPP1. Our findings provide insights into how ENPP1 hydrolyzes both ATP and cGAMP to participate in the two distinct biological processes. Ecto-nucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) is a type II transmembrane glycoprotein that hydrolyzes both ATP and cGAMP. Here the authors present the crystal structures of the extracellular domain of mouse ENPP1 in complex with 3′3′-cGAMP and the reaction intermediate pA(3′,5′)pG and discuss mechanistic implications.</description><subject>13/95</subject><subject>631/337</subject><subject>631/45/173</subject><subject>631/535/1266</subject><subject>Adenine</subject><subject>Adenosine</subject><subject>Adenosine triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>AMP</subject><subject>Biological activity</subject><subject>Catalysis</subject><subject>Cell Line</subject><subject>Cell Line, Tumor</subject><subject>Conformation</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Cyclic GMP</subject><subject>Degradation</subject><subject>Glycoproteins</subject><subject>Guanine</subject><subject>HEK293 Cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hydrogen bonds</subject><subject>Immune system</subject><subject>Innate immunity</subject><subject>Membrane Proteins - metabolism</subject><subject>Mineralization</subject><subject>multidisciplinary</subject><subject>Nucleotides, Cyclic - chemistry</subject><subject>Nucleotides, Cyclic - metabolism</subject><subject>Phosphodiesterase</subject><subject>Phosphoric Diester Hydrolases - chemistry</subject><subject>Phosphoric Diester Hydrolases - metabolism</subject><subject>Protein Structure, Secondary</subject><subject>Pyrophosphatase</subject><subject>Pyrophosphatases - chemistry</subject><subject>Pyrophosphatases - metabolism</subject><subject>Reaction intermediates</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction - physiology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uktv1DAQthCIVkv_AAcUiQuXtH7HviBVVWkrtQIJOFuO7WS9ysbBdirtv8e76ZMDvsx45ptvngB8RPAUQSLOEkWUNzVEooZcYlw3b8AxhhTVqMHk7Qv9CJyktIHlEYkEpe_BEYGEcUjZMdA_c5xNnqMeKj8m369zKkoOlbk6v_tRWddHbXX2YazaXXVpcqjH2QwuZG9dNe1imNYhTWuddSr_gx6sdym7uLegD-Bdp4fkTh7kCvz-dvnr4rq-_X51c3F-WxtGYa6lZtgIh6FjlrMiTcel0Z0QmBhRWkTWStKxhlguBEKcMAgplZ1EpRdsyQrcLLw26I2aot_quFNBe3UwhNgrHbMvpSvXOkwgbkWjS24p2_08HEcdxZjq1hWurwvXNLdbZ40bcxnQK9LXntGvVR_uFccQNpIUgi8PBDH8mcsw1NYn44ZBjy7MSWGEGYGskaxAP_8D3YQ5jmVUexRtKOdl4SuAF5SJIaXouqdiEFT7g1DLQahyEOpwEKopQZ9etvEU8rj-AiALIBXX2Lv4nPs_tH8B4h3ApQ</recordid><startdate>20181024</startdate><enddate>20181024</enddate><creator>Kato, Kazuki</creator><creator>Nishimasu, Hiroshi</creator><creator>Oikawa, Daisuke</creator><creator>Hirano, Seiichi</creator><creator>Hirano, Hisato</creator><creator>Kasuya, Go</creator><creator>Ishitani, Ryuichiro</creator><creator>Tokunaga, Fuminori</creator><creator>Nureki, Osamu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1756-5764</orcidid><orcidid>https://orcid.org/0000-0003-1813-7008</orcidid></search><sort><creationdate>20181024</creationdate><title>Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1</title><author>Kato, Kazuki ; Nishimasu, Hiroshi ; Oikawa, Daisuke ; Hirano, Seiichi ; Hirano, Hisato ; Kasuya, Go ; Ishitani, Ryuichiro ; Tokunaga, Fuminori ; Nureki, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-9a52c8e20e5d65e20cf69caf8823c80691dd93f573d6881163500449f913562d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/95</topic><topic>631/337</topic><topic>631/45/173</topic><topic>631/535/1266</topic><topic>Adenine</topic><topic>Adenosine</topic><topic>Adenosine triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>AMP</topic><topic>Biological activity</topic><topic>Catalysis</topic><topic>Cell Line</topic><topic>Cell Line, Tumor</topic><topic>Conformation</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Cyclic GMP</topic><topic>Degradation</topic><topic>Glycoproteins</topic><topic>Guanine</topic><topic>HEK293 Cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hydrogen bonds</topic><topic>Immune system</topic><topic>Innate immunity</topic><topic>Membrane Proteins - metabolism</topic><topic>Mineralization</topic><topic>multidisciplinary</topic><topic>Nucleotides, Cyclic - chemistry</topic><topic>Nucleotides, Cyclic - metabolism</topic><topic>Phosphodiesterase</topic><topic>Phosphoric Diester Hydrolases - chemistry</topic><topic>Phosphoric Diester Hydrolases - metabolism</topic><topic>Protein Structure, Secondary</topic><topic>Pyrophosphatase</topic><topic>Pyrophosphatases - chemistry</topic><topic>Pyrophosphatases - metabolism</topic><topic>Reaction intermediates</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kato, Kazuki</creatorcontrib><creatorcontrib>Nishimasu, Hiroshi</creatorcontrib><creatorcontrib>Oikawa, Daisuke</creatorcontrib><creatorcontrib>Hirano, Seiichi</creatorcontrib><creatorcontrib>Hirano, Hisato</creatorcontrib><creatorcontrib>Kasuya, Go</creatorcontrib><creatorcontrib>Ishitani, Ryuichiro</creatorcontrib><creatorcontrib>Tokunaga, Fuminori</creatorcontrib><creatorcontrib>Nureki, Osamu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kato, Kazuki</au><au>Nishimasu, Hiroshi</au><au>Oikawa, Daisuke</au><au>Hirano, Seiichi</au><au>Hirano, Hisato</au><au>Kasuya, Go</au><au>Ishitani, Ryuichiro</au><au>Tokunaga, Fuminori</au><au>Nureki, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2018-10-24</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>4424</spage><epage>8</epage><pages>4424-8</pages><artnum>4424</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>ENPP1 (Ecto-nucleotide pyrophosphatase phosphodiesterase 1), a type II transmembrane glycoprotein, hydrolyzes ATP to produce AMP and diphosphate, thereby inhibiting bone mineralization. A recent study showed that ENPP1 also preferentially hydrolyzes 2′3′-cGAMP (cyclic GMP-AMP) but not its linkage isomer 3′3′-cGAMP, and negatively regulates the cGAS-STING pathway in the innate immune system. Here, we present the high-resolution crystal structures of ENPP1 in complex with 3′3′-cGAMP and the reaction intermediate pA(3′,5′)pG. The structures revealed that the adenine and guanine bases of the dinucleotides are recognized by nucleotide- and guanine-pockets, respectively. Furthermore, the structures indicate that 2′3′-cGAMP, but not 3′3′-cGAMP, binds to the active site in a conformation suitable for catalysis, thereby explaining the specific degradation of 2′3′-cGAMP by ENPP1. Our findings provide insights into how ENPP1 hydrolyzes both ATP and cGAMP to participate in the two distinct biological processes. Ecto-nucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) is a type II transmembrane glycoprotein that hydrolyzes both ATP and cGAMP. Here the authors present the crystal structures of the extracellular domain of mouse ENPP1 in complex with 3′3′-cGAMP and the reaction intermediate pA(3′,5′)pG and discuss mechanistic implications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30356045</pmid><doi>10.1038/s41467-018-06922-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1756-5764</orcidid><orcidid>https://orcid.org/0000-0003-1813-7008</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2018-10, Vol.9 (1), p.4424-8, Article 4424
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ebe2302b87a54099b3035e61f4224abe
source Open Access: PubMed Central; Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/95
631/337
631/45/173
631/535/1266
Adenine
Adenosine
Adenosine triphosphate
Adenosine Triphosphate - metabolism
AMP
Biological activity
Catalysis
Cell Line
Cell Line, Tumor
Conformation
Crystal structure
Crystallization
Cyclic GMP
Degradation
Glycoproteins
Guanine
HEK293 Cells
Humanities and Social Sciences
Humans
Hydrogen bonds
Immune system
Innate immunity
Membrane Proteins - metabolism
Mineralization
multidisciplinary
Nucleotides, Cyclic - chemistry
Nucleotides, Cyclic - metabolism
Phosphodiesterase
Phosphoric Diester Hydrolases - chemistry
Phosphoric Diester Hydrolases - metabolism
Protein Structure, Secondary
Pyrophosphatase
Pyrophosphatases - chemistry
Pyrophosphatases - metabolism
Reaction intermediates
Science
Science (multidisciplinary)
Signal Transduction - physiology
title Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A32%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20insights%20into%20cGAMP%20degradation%20by%20Ecto-nucleotide%20pyrophosphatase%20phosphodiesterase%201&rft.jtitle=Nature%20communications&rft.au=Kato,%20Kazuki&rft.date=2018-10-24&rft.volume=9&rft.issue=1&rft.spage=4424&rft.epage=8&rft.pages=4424-8&rft.artnum=4424&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-018-06922-7&rft_dat=%3Cproquest_doaj_%3E2125305795%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-9a52c8e20e5d65e20cf69caf8823c80691dd93f573d6881163500449f913562d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124746610&rft_id=info:pmid/30356045&rfr_iscdi=true