Loading…
Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1
ENPP1 (Ecto-nucleotide pyrophosphatase phosphodiesterase 1), a type II transmembrane glycoprotein, hydrolyzes ATP to produce AMP and diphosphate, thereby inhibiting bone mineralization. A recent study showed that ENPP1 also preferentially hydrolyzes 2′3′-cGAMP (cyclic GMP-AMP) but not its linkage is...
Saved in:
Published in: | Nature communications 2018-10, Vol.9 (1), p.4424-8, Article 4424 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-9a52c8e20e5d65e20cf69caf8823c80691dd93f573d6881163500449f913562d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-9a52c8e20e5d65e20cf69caf8823c80691dd93f573d6881163500449f913562d3 |
container_end_page | 8 |
container_issue | 1 |
container_start_page | 4424 |
container_title | Nature communications |
container_volume | 9 |
creator | Kato, Kazuki Nishimasu, Hiroshi Oikawa, Daisuke Hirano, Seiichi Hirano, Hisato Kasuya, Go Ishitani, Ryuichiro Tokunaga, Fuminori Nureki, Osamu |
description | ENPP1 (Ecto-nucleotide pyrophosphatase phosphodiesterase 1), a type II transmembrane glycoprotein, hydrolyzes ATP to produce AMP and diphosphate, thereby inhibiting bone mineralization. A recent study showed that ENPP1 also preferentially hydrolyzes 2′3′-cGAMP (cyclic GMP-AMP) but not its linkage isomer 3′3′-cGAMP, and negatively regulates the cGAS-STING pathway in the innate immune system. Here, we present the high-resolution crystal structures of ENPP1 in complex with 3′3′-cGAMP and the reaction intermediate pA(3′,5′)pG. The structures revealed that the adenine and guanine bases of the dinucleotides are recognized by nucleotide- and guanine-pockets, respectively. Furthermore, the structures indicate that 2′3′-cGAMP, but not 3′3′-cGAMP, binds to the active site in a conformation suitable for catalysis, thereby explaining the specific degradation of 2′3′-cGAMP by ENPP1. Our findings provide insights into how ENPP1 hydrolyzes both ATP and cGAMP to participate in the two distinct biological processes.
Ecto-nucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) is a type II transmembrane glycoprotein that hydrolyzes both ATP and cGAMP. Here the authors present the crystal structures of the extracellular domain of mouse ENPP1 in complex with 3′3′-cGAMP and the reaction intermediate pA(3′,5′)pG and discuss mechanistic implications. |
doi_str_mv | 10.1038/s41467-018-06922-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ebe2302b87a54099b3035e61f4224abe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ebe2302b87a54099b3035e61f4224abe</doaj_id><sourcerecordid>2125305795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-9a52c8e20e5d65e20cf69caf8823c80691dd93f573d6881163500449f913562d3</originalsourceid><addsrcrecordid>eNp9Uktv1DAQthCIVkv_AAcUiQuXtH7HviBVVWkrtQIJOFuO7WS9ysbBdirtv8e76ZMDvsx45ptvngB8RPAUQSLOEkWUNzVEooZcYlw3b8AxhhTVqMHk7Qv9CJyktIHlEYkEpe_BEYGEcUjZMdA_c5xNnqMeKj8m369zKkoOlbk6v_tRWddHbXX2YazaXXVpcqjH2QwuZG9dNe1imNYhTWuddSr_gx6sdym7uLegD-Bdp4fkTh7kCvz-dvnr4rq-_X51c3F-WxtGYa6lZtgIh6FjlrMiTcel0Z0QmBhRWkTWStKxhlguBEKcMAgplZ1EpRdsyQrcLLw26I2aot_quFNBe3UwhNgrHbMvpSvXOkwgbkWjS24p2_08HEcdxZjq1hWurwvXNLdbZ40bcxnQK9LXntGvVR_uFccQNpIUgi8PBDH8mcsw1NYn44ZBjy7MSWGEGYGskaxAP_8D3YQ5jmVUexRtKOdl4SuAF5SJIaXouqdiEFT7g1DLQahyEOpwEKopQZ9etvEU8rj-AiALIBXX2Lv4nPs_tH8B4h3ApQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124746610</pqid></control><display><type>article</type><title>Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kato, Kazuki ; Nishimasu, Hiroshi ; Oikawa, Daisuke ; Hirano, Seiichi ; Hirano, Hisato ; Kasuya, Go ; Ishitani, Ryuichiro ; Tokunaga, Fuminori ; Nureki, Osamu</creator><creatorcontrib>Kato, Kazuki ; Nishimasu, Hiroshi ; Oikawa, Daisuke ; Hirano, Seiichi ; Hirano, Hisato ; Kasuya, Go ; Ishitani, Ryuichiro ; Tokunaga, Fuminori ; Nureki, Osamu</creatorcontrib><description>ENPP1 (Ecto-nucleotide pyrophosphatase phosphodiesterase 1), a type II transmembrane glycoprotein, hydrolyzes ATP to produce AMP and diphosphate, thereby inhibiting bone mineralization. A recent study showed that ENPP1 also preferentially hydrolyzes 2′3′-cGAMP (cyclic GMP-AMP) but not its linkage isomer 3′3′-cGAMP, and negatively regulates the cGAS-STING pathway in the innate immune system. Here, we present the high-resolution crystal structures of ENPP1 in complex with 3′3′-cGAMP and the reaction intermediate pA(3′,5′)pG. The structures revealed that the adenine and guanine bases of the dinucleotides are recognized by nucleotide- and guanine-pockets, respectively. Furthermore, the structures indicate that 2′3′-cGAMP, but not 3′3′-cGAMP, binds to the active site in a conformation suitable for catalysis, thereby explaining the specific degradation of 2′3′-cGAMP by ENPP1. Our findings provide insights into how ENPP1 hydrolyzes both ATP and cGAMP to participate in the two distinct biological processes.
Ecto-nucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) is a type II transmembrane glycoprotein that hydrolyzes both ATP and cGAMP. Here the authors present the crystal structures of the extracellular domain of mouse ENPP1 in complex with 3′3′-cGAMP and the reaction intermediate pA(3′,5′)pG and discuss mechanistic implications.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-018-06922-7</identifier><identifier>PMID: 30356045</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/95 ; 631/337 ; 631/45/173 ; 631/535/1266 ; Adenine ; Adenosine ; Adenosine triphosphate ; Adenosine Triphosphate - metabolism ; AMP ; Biological activity ; Catalysis ; Cell Line ; Cell Line, Tumor ; Conformation ; Crystal structure ; Crystallization ; Cyclic GMP ; Degradation ; Glycoproteins ; Guanine ; HEK293 Cells ; Humanities and Social Sciences ; Humans ; Hydrogen bonds ; Immune system ; Innate immunity ; Membrane Proteins - metabolism ; Mineralization ; multidisciplinary ; Nucleotides, Cyclic - chemistry ; Nucleotides, Cyclic - metabolism ; Phosphodiesterase ; Phosphoric Diester Hydrolases - chemistry ; Phosphoric Diester Hydrolases - metabolism ; Protein Structure, Secondary ; Pyrophosphatase ; Pyrophosphatases - chemistry ; Pyrophosphatases - metabolism ; Reaction intermediates ; Science ; Science (multidisciplinary) ; Signal Transduction - physiology</subject><ispartof>Nature communications, 2018-10, Vol.9 (1), p.4424-8, Article 4424</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-9a52c8e20e5d65e20cf69caf8823c80691dd93f573d6881163500449f913562d3</citedby><cites>FETCH-LOGICAL-c540t-9a52c8e20e5d65e20cf69caf8823c80691dd93f573d6881163500449f913562d3</cites><orcidid>0000-0003-1756-5764 ; 0000-0003-1813-7008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2124746610/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2124746610?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30356045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kato, Kazuki</creatorcontrib><creatorcontrib>Nishimasu, Hiroshi</creatorcontrib><creatorcontrib>Oikawa, Daisuke</creatorcontrib><creatorcontrib>Hirano, Seiichi</creatorcontrib><creatorcontrib>Hirano, Hisato</creatorcontrib><creatorcontrib>Kasuya, Go</creatorcontrib><creatorcontrib>Ishitani, Ryuichiro</creatorcontrib><creatorcontrib>Tokunaga, Fuminori</creatorcontrib><creatorcontrib>Nureki, Osamu</creatorcontrib><title>Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>ENPP1 (Ecto-nucleotide pyrophosphatase phosphodiesterase 1), a type II transmembrane glycoprotein, hydrolyzes ATP to produce AMP and diphosphate, thereby inhibiting bone mineralization. A recent study showed that ENPP1 also preferentially hydrolyzes 2′3′-cGAMP (cyclic GMP-AMP) but not its linkage isomer 3′3′-cGAMP, and negatively regulates the cGAS-STING pathway in the innate immune system. Here, we present the high-resolution crystal structures of ENPP1 in complex with 3′3′-cGAMP and the reaction intermediate pA(3′,5′)pG. The structures revealed that the adenine and guanine bases of the dinucleotides are recognized by nucleotide- and guanine-pockets, respectively. Furthermore, the structures indicate that 2′3′-cGAMP, but not 3′3′-cGAMP, binds to the active site in a conformation suitable for catalysis, thereby explaining the specific degradation of 2′3′-cGAMP by ENPP1. Our findings provide insights into how ENPP1 hydrolyzes both ATP and cGAMP to participate in the two distinct biological processes.
Ecto-nucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) is a type II transmembrane glycoprotein that hydrolyzes both ATP and cGAMP. Here the authors present the crystal structures of the extracellular domain of mouse ENPP1 in complex with 3′3′-cGAMP and the reaction intermediate pA(3′,5′)pG and discuss mechanistic implications.</description><subject>13/95</subject><subject>631/337</subject><subject>631/45/173</subject><subject>631/535/1266</subject><subject>Adenine</subject><subject>Adenosine</subject><subject>Adenosine triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>AMP</subject><subject>Biological activity</subject><subject>Catalysis</subject><subject>Cell Line</subject><subject>Cell Line, Tumor</subject><subject>Conformation</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Cyclic GMP</subject><subject>Degradation</subject><subject>Glycoproteins</subject><subject>Guanine</subject><subject>HEK293 Cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hydrogen bonds</subject><subject>Immune system</subject><subject>Innate immunity</subject><subject>Membrane Proteins - metabolism</subject><subject>Mineralization</subject><subject>multidisciplinary</subject><subject>Nucleotides, Cyclic - chemistry</subject><subject>Nucleotides, Cyclic - metabolism</subject><subject>Phosphodiesterase</subject><subject>Phosphoric Diester Hydrolases - chemistry</subject><subject>Phosphoric Diester Hydrolases - metabolism</subject><subject>Protein Structure, Secondary</subject><subject>Pyrophosphatase</subject><subject>Pyrophosphatases - chemistry</subject><subject>Pyrophosphatases - metabolism</subject><subject>Reaction intermediates</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction - physiology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uktv1DAQthCIVkv_AAcUiQuXtH7HviBVVWkrtQIJOFuO7WS9ysbBdirtv8e76ZMDvsx45ptvngB8RPAUQSLOEkWUNzVEooZcYlw3b8AxhhTVqMHk7Qv9CJyktIHlEYkEpe_BEYGEcUjZMdA_c5xNnqMeKj8m369zKkoOlbk6v_tRWddHbXX2YazaXXVpcqjH2QwuZG9dNe1imNYhTWuddSr_gx6sdym7uLegD-Bdp4fkTh7kCvz-dvnr4rq-_X51c3F-WxtGYa6lZtgIh6FjlrMiTcel0Z0QmBhRWkTWStKxhlguBEKcMAgplZ1EpRdsyQrcLLw26I2aot_quFNBe3UwhNgrHbMvpSvXOkwgbkWjS24p2_08HEcdxZjq1hWurwvXNLdbZ40bcxnQK9LXntGvVR_uFccQNpIUgi8PBDH8mcsw1NYn44ZBjy7MSWGEGYGskaxAP_8D3YQ5jmVUexRtKOdl4SuAF5SJIaXouqdiEFT7g1DLQahyEOpwEKopQZ9etvEU8rj-AiALIBXX2Lv4nPs_tH8B4h3ApQ</recordid><startdate>20181024</startdate><enddate>20181024</enddate><creator>Kato, Kazuki</creator><creator>Nishimasu, Hiroshi</creator><creator>Oikawa, Daisuke</creator><creator>Hirano, Seiichi</creator><creator>Hirano, Hisato</creator><creator>Kasuya, Go</creator><creator>Ishitani, Ryuichiro</creator><creator>Tokunaga, Fuminori</creator><creator>Nureki, Osamu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1756-5764</orcidid><orcidid>https://orcid.org/0000-0003-1813-7008</orcidid></search><sort><creationdate>20181024</creationdate><title>Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1</title><author>Kato, Kazuki ; Nishimasu, Hiroshi ; Oikawa, Daisuke ; Hirano, Seiichi ; Hirano, Hisato ; Kasuya, Go ; Ishitani, Ryuichiro ; Tokunaga, Fuminori ; Nureki, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-9a52c8e20e5d65e20cf69caf8823c80691dd93f573d6881163500449f913562d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/95</topic><topic>631/337</topic><topic>631/45/173</topic><topic>631/535/1266</topic><topic>Adenine</topic><topic>Adenosine</topic><topic>Adenosine triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>AMP</topic><topic>Biological activity</topic><topic>Catalysis</topic><topic>Cell Line</topic><topic>Cell Line, Tumor</topic><topic>Conformation</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Cyclic GMP</topic><topic>Degradation</topic><topic>Glycoproteins</topic><topic>Guanine</topic><topic>HEK293 Cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hydrogen bonds</topic><topic>Immune system</topic><topic>Innate immunity</topic><topic>Membrane Proteins - metabolism</topic><topic>Mineralization</topic><topic>multidisciplinary</topic><topic>Nucleotides, Cyclic - chemistry</topic><topic>Nucleotides, Cyclic - metabolism</topic><topic>Phosphodiesterase</topic><topic>Phosphoric Diester Hydrolases - chemistry</topic><topic>Phosphoric Diester Hydrolases - metabolism</topic><topic>Protein Structure, Secondary</topic><topic>Pyrophosphatase</topic><topic>Pyrophosphatases - chemistry</topic><topic>Pyrophosphatases - metabolism</topic><topic>Reaction intermediates</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kato, Kazuki</creatorcontrib><creatorcontrib>Nishimasu, Hiroshi</creatorcontrib><creatorcontrib>Oikawa, Daisuke</creatorcontrib><creatorcontrib>Hirano, Seiichi</creatorcontrib><creatorcontrib>Hirano, Hisato</creatorcontrib><creatorcontrib>Kasuya, Go</creatorcontrib><creatorcontrib>Ishitani, Ryuichiro</creatorcontrib><creatorcontrib>Tokunaga, Fuminori</creatorcontrib><creatorcontrib>Nureki, Osamu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kato, Kazuki</au><au>Nishimasu, Hiroshi</au><au>Oikawa, Daisuke</au><au>Hirano, Seiichi</au><au>Hirano, Hisato</au><au>Kasuya, Go</au><au>Ishitani, Ryuichiro</au><au>Tokunaga, Fuminori</au><au>Nureki, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2018-10-24</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>4424</spage><epage>8</epage><pages>4424-8</pages><artnum>4424</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>ENPP1 (Ecto-nucleotide pyrophosphatase phosphodiesterase 1), a type II transmembrane glycoprotein, hydrolyzes ATP to produce AMP and diphosphate, thereby inhibiting bone mineralization. A recent study showed that ENPP1 also preferentially hydrolyzes 2′3′-cGAMP (cyclic GMP-AMP) but not its linkage isomer 3′3′-cGAMP, and negatively regulates the cGAS-STING pathway in the innate immune system. Here, we present the high-resolution crystal structures of ENPP1 in complex with 3′3′-cGAMP and the reaction intermediate pA(3′,5′)pG. The structures revealed that the adenine and guanine bases of the dinucleotides are recognized by nucleotide- and guanine-pockets, respectively. Furthermore, the structures indicate that 2′3′-cGAMP, but not 3′3′-cGAMP, binds to the active site in a conformation suitable for catalysis, thereby explaining the specific degradation of 2′3′-cGAMP by ENPP1. Our findings provide insights into how ENPP1 hydrolyzes both ATP and cGAMP to participate in the two distinct biological processes.
Ecto-nucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) is a type II transmembrane glycoprotein that hydrolyzes both ATP and cGAMP. Here the authors present the crystal structures of the extracellular domain of mouse ENPP1 in complex with 3′3′-cGAMP and the reaction intermediate pA(3′,5′)pG and discuss mechanistic implications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30356045</pmid><doi>10.1038/s41467-018-06922-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1756-5764</orcidid><orcidid>https://orcid.org/0000-0003-1813-7008</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2018-10, Vol.9 (1), p.4424-8, Article 4424 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ebe2302b87a54099b3035e61f4224abe |
source | Open Access: PubMed Central; Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/95 631/337 631/45/173 631/535/1266 Adenine Adenosine Adenosine triphosphate Adenosine Triphosphate - metabolism AMP Biological activity Catalysis Cell Line Cell Line, Tumor Conformation Crystal structure Crystallization Cyclic GMP Degradation Glycoproteins Guanine HEK293 Cells Humanities and Social Sciences Humans Hydrogen bonds Immune system Innate immunity Membrane Proteins - metabolism Mineralization multidisciplinary Nucleotides, Cyclic - chemistry Nucleotides, Cyclic - metabolism Phosphodiesterase Phosphoric Diester Hydrolases - chemistry Phosphoric Diester Hydrolases - metabolism Protein Structure, Secondary Pyrophosphatase Pyrophosphatases - chemistry Pyrophosphatases - metabolism Reaction intermediates Science Science (multidisciplinary) Signal Transduction - physiology |
title | Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A32%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20insights%20into%20cGAMP%20degradation%20by%20Ecto-nucleotide%20pyrophosphatase%20phosphodiesterase%201&rft.jtitle=Nature%20communications&rft.au=Kato,%20Kazuki&rft.date=2018-10-24&rft.volume=9&rft.issue=1&rft.spage=4424&rft.epage=8&rft.pages=4424-8&rft.artnum=4424&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-018-06922-7&rft_dat=%3Cproquest_doaj_%3E2125305795%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-9a52c8e20e5d65e20cf69caf8823c80691dd93f573d6881163500449f913562d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124746610&rft_id=info:pmid/30356045&rfr_iscdi=true |