Loading…

Enhanced thermophysical properties of water-based single and hybrid metallic nanofluids: Insights from Equilibrium Molecular Dynamics

•Thermal conductivity and viscosity of water-based nanofluids have been studied using the Equilibrium Molecular dynamics (EMD) simulation.•The simulation has been performed under NVT (constant number, constant volume, and constant temperature) ensemble•Thermal conductivity and viscosity improve in h...

Full description

Saved in:
Bibliographic Details
Published in:Chemical thermodynamics and thermal analysis 2022-12, Vol.8, p.100096, Article 100096
Main Authors: Shit, Sakti Pada, Pal, Sudipta, Ghosh, N.K., Sau, Kartik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3256-b51a8448515df3ce79dd6a103033a03f09ec6c267272d1aa59cb60dd16d732a63
cites cdi_FETCH-LOGICAL-c3256-b51a8448515df3ce79dd6a103033a03f09ec6c267272d1aa59cb60dd16d732a63
container_end_page
container_issue
container_start_page 100096
container_title Chemical thermodynamics and thermal analysis
container_volume 8
creator Shit, Sakti Pada
Pal, Sudipta
Ghosh, N.K.
Sau, Kartik
description •Thermal conductivity and viscosity of water-based nanofluids have been studied using the Equilibrium Molecular dynamics (EMD) simulation.•The simulation has been performed under NVT (constant number, constant volume, and constant temperature) ensemble•Thermal conductivity and viscosity improve in hybrid metallic nanofluids. The effect of single (Cu or Ag) and hybrid (Cu+Ag) metallic nanoparticles on the thermophysical properties, namely viscosity and thermal conductivity of water-based nanofluids, has been studied using Equilibrium Molecular dynamics (EMD) simulation. The TIP3P (three-site transferrable intermolecular potential) water model has been chosen. The interaction of water molecules has been modelled by the Lennard-Jones (L J) potential in combination with Coulomb potential. The embedded-atom (EAM) potential method has been used for hybrid (Cu and Ag) atom interaction. Simulation has been performed at 303 K and atmospheric pressure using the Berendsen algorithm under NVT (constant number, constant volume, and constant temperature) ensemble with production steps of 2 ns and integral step of 1fs. Interestingly, nanofluids containing one metallic nanoparticle (Cu or Ag) have lower thermal conductivity and viscosity than nanofluids having hybrid metallic nanoparticles with the same volume fraction.
doi_str_mv 10.1016/j.ctta.2022.100096
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ebef46b9705c46a6a4e13ef3c318e645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2667312622000621</els_id><doaj_id>oai_doaj_org_article_ebef46b9705c46a6a4e13ef3c318e645</doaj_id><sourcerecordid>S2667312622000621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3256-b51a8448515df3ce79dd6a103033a03f09ec6c267272d1aa59cb60dd16d732a63</originalsourceid><addsrcrecordid>eNp9UctOwzAQjBBIIOgPcPIPpPiROA3igqBAJRAXOFsbe9O4cuJip6B-AP-NSxHixGlXq5nZnZ0sO2d0yiiTF6upHkeYcsp5GlBay4PshEtZ5YJxefinP84mMa4ShM8YE5SdZJ_zoYNBoyFjh6H3624brQZH1sGvMYwWI_Et-YARQ95ATMBoh6VDAoMh3bYJ1pAeR3DOajLA4Fu3sSZeksUQ7bIbI2mD78n8bWOdTehNT568Q71xEMjtdoDe6niWHbXgIk5-6mn2ejd_uXnIH5_vFzfXj7kWvJR5UzKYFcWsZKVphcaqNkYCo4IKAVS0tEYtNZcVr7hhAGWtG0mNYdJUgoMUp9lir2s8rNQ62B7CVnmw6nvgw1JB8qwdKmywLWRTV7TUhQQJBTKBaatgM5RFmbT4XksHH2PA9lePUbXLRa3ULhe1y0Xtc0mkqz0Jk8t3i0FFbXH3fxtQj-kM-x_9CzgRmNs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced thermophysical properties of water-based single and hybrid metallic nanofluids: Insights from Equilibrium Molecular Dynamics</title><source>ScienceDirect Journals</source><creator>Shit, Sakti Pada ; Pal, Sudipta ; Ghosh, N.K. ; Sau, Kartik</creator><creatorcontrib>Shit, Sakti Pada ; Pal, Sudipta ; Ghosh, N.K. ; Sau, Kartik</creatorcontrib><description>•Thermal conductivity and viscosity of water-based nanofluids have been studied using the Equilibrium Molecular dynamics (EMD) simulation.•The simulation has been performed under NVT (constant number, constant volume, and constant temperature) ensemble•Thermal conductivity and viscosity improve in hybrid metallic nanofluids. The effect of single (Cu or Ag) and hybrid (Cu+Ag) metallic nanoparticles on the thermophysical properties, namely viscosity and thermal conductivity of water-based nanofluids, has been studied using Equilibrium Molecular dynamics (EMD) simulation. The TIP3P (three-site transferrable intermolecular potential) water model has been chosen. The interaction of water molecules has been modelled by the Lennard-Jones (L J) potential in combination with Coulomb potential. The embedded-atom (EAM) potential method has been used for hybrid (Cu and Ag) atom interaction. Simulation has been performed at 303 K and atmospheric pressure using the Berendsen algorithm under NVT (constant number, constant volume, and constant temperature) ensemble with production steps of 2 ns and integral step of 1fs. Interestingly, nanofluids containing one metallic nanoparticle (Cu or Ag) have lower thermal conductivity and viscosity than nanofluids having hybrid metallic nanoparticles with the same volume fraction.</description><identifier>ISSN: 2667-3126</identifier><identifier>EISSN: 2667-3126</identifier><identifier>DOI: 10.1016/j.ctta.2022.100096</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Equilibrium molecular dynamic simulation ; Hybrid metallic nanofluids ; Loaded metallic nanoparticles ; Nanolayer ; Thermal resistance</subject><ispartof>Chemical thermodynamics and thermal analysis, 2022-12, Vol.8, p.100096, Article 100096</ispartof><rights>2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3256-b51a8448515df3ce79dd6a103033a03f09ec6c267272d1aa59cb60dd16d732a63</citedby><cites>FETCH-LOGICAL-c3256-b51a8448515df3ce79dd6a103033a03f09ec6c267272d1aa59cb60dd16d732a63</cites><orcidid>0000-0003-2790-2410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Shit, Sakti Pada</creatorcontrib><creatorcontrib>Pal, Sudipta</creatorcontrib><creatorcontrib>Ghosh, N.K.</creatorcontrib><creatorcontrib>Sau, Kartik</creatorcontrib><title>Enhanced thermophysical properties of water-based single and hybrid metallic nanofluids: Insights from Equilibrium Molecular Dynamics</title><title>Chemical thermodynamics and thermal analysis</title><description>•Thermal conductivity and viscosity of water-based nanofluids have been studied using the Equilibrium Molecular dynamics (EMD) simulation.•The simulation has been performed under NVT (constant number, constant volume, and constant temperature) ensemble•Thermal conductivity and viscosity improve in hybrid metallic nanofluids. The effect of single (Cu or Ag) and hybrid (Cu+Ag) metallic nanoparticles on the thermophysical properties, namely viscosity and thermal conductivity of water-based nanofluids, has been studied using Equilibrium Molecular dynamics (EMD) simulation. The TIP3P (three-site transferrable intermolecular potential) water model has been chosen. The interaction of water molecules has been modelled by the Lennard-Jones (L J) potential in combination with Coulomb potential. The embedded-atom (EAM) potential method has been used for hybrid (Cu and Ag) atom interaction. Simulation has been performed at 303 K and atmospheric pressure using the Berendsen algorithm under NVT (constant number, constant volume, and constant temperature) ensemble with production steps of 2 ns and integral step of 1fs. Interestingly, nanofluids containing one metallic nanoparticle (Cu or Ag) have lower thermal conductivity and viscosity than nanofluids having hybrid metallic nanoparticles with the same volume fraction.</description><subject>Equilibrium molecular dynamic simulation</subject><subject>Hybrid metallic nanofluids</subject><subject>Loaded metallic nanoparticles</subject><subject>Nanolayer</subject><subject>Thermal resistance</subject><issn>2667-3126</issn><issn>2667-3126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UctOwzAQjBBIIOgPcPIPpPiROA3igqBAJRAXOFsbe9O4cuJip6B-AP-NSxHixGlXq5nZnZ0sO2d0yiiTF6upHkeYcsp5GlBay4PshEtZ5YJxefinP84mMa4ShM8YE5SdZJ_zoYNBoyFjh6H3624brQZH1sGvMYwWI_Et-YARQ95ATMBoh6VDAoMh3bYJ1pAeR3DOajLA4Fu3sSZeksUQ7bIbI2mD78n8bWOdTehNT568Q71xEMjtdoDe6niWHbXgIk5-6mn2ejd_uXnIH5_vFzfXj7kWvJR5UzKYFcWsZKVphcaqNkYCo4IKAVS0tEYtNZcVr7hhAGWtG0mNYdJUgoMUp9lir2s8rNQ62B7CVnmw6nvgw1JB8qwdKmywLWRTV7TUhQQJBTKBaatgM5RFmbT4XksHH2PA9lePUbXLRa3ULhe1y0Xtc0mkqz0Jk8t3i0FFbXH3fxtQj-kM-x_9CzgRmNs</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Shit, Sakti Pada</creator><creator>Pal, Sudipta</creator><creator>Ghosh, N.K.</creator><creator>Sau, Kartik</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2790-2410</orcidid></search><sort><creationdate>202212</creationdate><title>Enhanced thermophysical properties of water-based single and hybrid metallic nanofluids: Insights from Equilibrium Molecular Dynamics</title><author>Shit, Sakti Pada ; Pal, Sudipta ; Ghosh, N.K. ; Sau, Kartik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3256-b51a8448515df3ce79dd6a103033a03f09ec6c267272d1aa59cb60dd16d732a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Equilibrium molecular dynamic simulation</topic><topic>Hybrid metallic nanofluids</topic><topic>Loaded metallic nanoparticles</topic><topic>Nanolayer</topic><topic>Thermal resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shit, Sakti Pada</creatorcontrib><creatorcontrib>Pal, Sudipta</creatorcontrib><creatorcontrib>Ghosh, N.K.</creatorcontrib><creatorcontrib>Sau, Kartik</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Chemical thermodynamics and thermal analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shit, Sakti Pada</au><au>Pal, Sudipta</au><au>Ghosh, N.K.</au><au>Sau, Kartik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced thermophysical properties of water-based single and hybrid metallic nanofluids: Insights from Equilibrium Molecular Dynamics</atitle><jtitle>Chemical thermodynamics and thermal analysis</jtitle><date>2022-12</date><risdate>2022</risdate><volume>8</volume><spage>100096</spage><pages>100096-</pages><artnum>100096</artnum><issn>2667-3126</issn><eissn>2667-3126</eissn><abstract>•Thermal conductivity and viscosity of water-based nanofluids have been studied using the Equilibrium Molecular dynamics (EMD) simulation.•The simulation has been performed under NVT (constant number, constant volume, and constant temperature) ensemble•Thermal conductivity and viscosity improve in hybrid metallic nanofluids. The effect of single (Cu or Ag) and hybrid (Cu+Ag) metallic nanoparticles on the thermophysical properties, namely viscosity and thermal conductivity of water-based nanofluids, has been studied using Equilibrium Molecular dynamics (EMD) simulation. The TIP3P (three-site transferrable intermolecular potential) water model has been chosen. The interaction of water molecules has been modelled by the Lennard-Jones (L J) potential in combination with Coulomb potential. The embedded-atom (EAM) potential method has been used for hybrid (Cu and Ag) atom interaction. Simulation has been performed at 303 K and atmospheric pressure using the Berendsen algorithm under NVT (constant number, constant volume, and constant temperature) ensemble with production steps of 2 ns and integral step of 1fs. Interestingly, nanofluids containing one metallic nanoparticle (Cu or Ag) have lower thermal conductivity and viscosity than nanofluids having hybrid metallic nanoparticles with the same volume fraction.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ctta.2022.100096</doi><orcidid>https://orcid.org/0000-0003-2790-2410</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2667-3126
ispartof Chemical thermodynamics and thermal analysis, 2022-12, Vol.8, p.100096, Article 100096
issn 2667-3126
2667-3126
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ebef46b9705c46a6a4e13ef3c318e645
source ScienceDirect Journals
subjects Equilibrium molecular dynamic simulation
Hybrid metallic nanofluids
Loaded metallic nanoparticles
Nanolayer
Thermal resistance
title Enhanced thermophysical properties of water-based single and hybrid metallic nanofluids: Insights from Equilibrium Molecular Dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A47%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20thermophysical%20properties%20of%20water-based%20single%20and%20hybrid%20metallic%20nanofluids:%20Insights%20from%20Equilibrium%20Molecular%20Dynamics&rft.jtitle=Chemical%20thermodynamics%20and%20thermal%20analysis&rft.au=Shit,%20Sakti%20Pada&rft.date=2022-12&rft.volume=8&rft.spage=100096&rft.pages=100096-&rft.artnum=100096&rft.issn=2667-3126&rft.eissn=2667-3126&rft_id=info:doi/10.1016/j.ctta.2022.100096&rft_dat=%3Celsevier_doaj_%3ES2667312622000621%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3256-b51a8448515df3ce79dd6a103033a03f09ec6c267272d1aa59cb60dd16d732a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true