Loading…
Enhanced thermophysical properties of water-based single and hybrid metallic nanofluids: Insights from Equilibrium Molecular Dynamics
•Thermal conductivity and viscosity of water-based nanofluids have been studied using the Equilibrium Molecular dynamics (EMD) simulation.•The simulation has been performed under NVT (constant number, constant volume, and constant temperature) ensemble•Thermal conductivity and viscosity improve in h...
Saved in:
Published in: | Chemical thermodynamics and thermal analysis 2022-12, Vol.8, p.100096, Article 100096 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3256-b51a8448515df3ce79dd6a103033a03f09ec6c267272d1aa59cb60dd16d732a63 |
---|---|
cites | cdi_FETCH-LOGICAL-c3256-b51a8448515df3ce79dd6a103033a03f09ec6c267272d1aa59cb60dd16d732a63 |
container_end_page | |
container_issue | |
container_start_page | 100096 |
container_title | Chemical thermodynamics and thermal analysis |
container_volume | 8 |
creator | Shit, Sakti Pada Pal, Sudipta Ghosh, N.K. Sau, Kartik |
description | •Thermal conductivity and viscosity of water-based nanofluids have been studied using the Equilibrium Molecular dynamics (EMD) simulation.•The simulation has been performed under NVT (constant number, constant volume, and constant temperature) ensemble•Thermal conductivity and viscosity improve in hybrid metallic nanofluids.
The effect of single (Cu or Ag) and hybrid (Cu+Ag) metallic nanoparticles on the thermophysical properties, namely viscosity and thermal conductivity of water-based nanofluids, has been studied using Equilibrium Molecular dynamics (EMD) simulation. The TIP3P (three-site transferrable intermolecular potential) water model has been chosen. The interaction of water molecules has been modelled by the Lennard-Jones (L J) potential in combination with Coulomb potential. The embedded-atom (EAM) potential method has been used for hybrid (Cu and Ag) atom interaction. Simulation has been performed at 303 K and atmospheric pressure using the Berendsen algorithm under NVT (constant number, constant volume, and constant temperature) ensemble with production steps of 2 ns and integral step of 1fs. Interestingly, nanofluids containing one metallic nanoparticle (Cu or Ag) have lower thermal conductivity and viscosity than nanofluids having hybrid metallic nanoparticles with the same volume fraction. |
doi_str_mv | 10.1016/j.ctta.2022.100096 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ebef46b9705c46a6a4e13ef3c318e645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2667312622000621</els_id><doaj_id>oai_doaj_org_article_ebef46b9705c46a6a4e13ef3c318e645</doaj_id><sourcerecordid>S2667312622000621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3256-b51a8448515df3ce79dd6a103033a03f09ec6c267272d1aa59cb60dd16d732a63</originalsourceid><addsrcrecordid>eNp9UctOwzAQjBBIIOgPcPIPpPiROA3igqBAJRAXOFsbe9O4cuJip6B-AP-NSxHixGlXq5nZnZ0sO2d0yiiTF6upHkeYcsp5GlBay4PshEtZ5YJxefinP84mMa4ShM8YE5SdZJ_zoYNBoyFjh6H3624brQZH1sGvMYwWI_Et-YARQ95ATMBoh6VDAoMh3bYJ1pAeR3DOajLA4Fu3sSZeksUQ7bIbI2mD78n8bWOdTehNT568Q71xEMjtdoDe6niWHbXgIk5-6mn2ejd_uXnIH5_vFzfXj7kWvJR5UzKYFcWsZKVphcaqNkYCo4IKAVS0tEYtNZcVr7hhAGWtG0mNYdJUgoMUp9lir2s8rNQ62B7CVnmw6nvgw1JB8qwdKmywLWRTV7TUhQQJBTKBaatgM5RFmbT4XksHH2PA9lePUbXLRa3ULhe1y0Xtc0mkqz0Jk8t3i0FFbXH3fxtQj-kM-x_9CzgRmNs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced thermophysical properties of water-based single and hybrid metallic nanofluids: Insights from Equilibrium Molecular Dynamics</title><source>ScienceDirect Journals</source><creator>Shit, Sakti Pada ; Pal, Sudipta ; Ghosh, N.K. ; Sau, Kartik</creator><creatorcontrib>Shit, Sakti Pada ; Pal, Sudipta ; Ghosh, N.K. ; Sau, Kartik</creatorcontrib><description>•Thermal conductivity and viscosity of water-based nanofluids have been studied using the Equilibrium Molecular dynamics (EMD) simulation.•The simulation has been performed under NVT (constant number, constant volume, and constant temperature) ensemble•Thermal conductivity and viscosity improve in hybrid metallic nanofluids.
The effect of single (Cu or Ag) and hybrid (Cu+Ag) metallic nanoparticles on the thermophysical properties, namely viscosity and thermal conductivity of water-based nanofluids, has been studied using Equilibrium Molecular dynamics (EMD) simulation. The TIP3P (three-site transferrable intermolecular potential) water model has been chosen. The interaction of water molecules has been modelled by the Lennard-Jones (L J) potential in combination with Coulomb potential. The embedded-atom (EAM) potential method has been used for hybrid (Cu and Ag) atom interaction. Simulation has been performed at 303 K and atmospheric pressure using the Berendsen algorithm under NVT (constant number, constant volume, and constant temperature) ensemble with production steps of 2 ns and integral step of 1fs. Interestingly, nanofluids containing one metallic nanoparticle (Cu or Ag) have lower thermal conductivity and viscosity than nanofluids having hybrid metallic nanoparticles with the same volume fraction.</description><identifier>ISSN: 2667-3126</identifier><identifier>EISSN: 2667-3126</identifier><identifier>DOI: 10.1016/j.ctta.2022.100096</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Equilibrium molecular dynamic simulation ; Hybrid metallic nanofluids ; Loaded metallic nanoparticles ; Nanolayer ; Thermal resistance</subject><ispartof>Chemical thermodynamics and thermal analysis, 2022-12, Vol.8, p.100096, Article 100096</ispartof><rights>2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3256-b51a8448515df3ce79dd6a103033a03f09ec6c267272d1aa59cb60dd16d732a63</citedby><cites>FETCH-LOGICAL-c3256-b51a8448515df3ce79dd6a103033a03f09ec6c267272d1aa59cb60dd16d732a63</cites><orcidid>0000-0003-2790-2410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Shit, Sakti Pada</creatorcontrib><creatorcontrib>Pal, Sudipta</creatorcontrib><creatorcontrib>Ghosh, N.K.</creatorcontrib><creatorcontrib>Sau, Kartik</creatorcontrib><title>Enhanced thermophysical properties of water-based single and hybrid metallic nanofluids: Insights from Equilibrium Molecular Dynamics</title><title>Chemical thermodynamics and thermal analysis</title><description>•Thermal conductivity and viscosity of water-based nanofluids have been studied using the Equilibrium Molecular dynamics (EMD) simulation.•The simulation has been performed under NVT (constant number, constant volume, and constant temperature) ensemble•Thermal conductivity and viscosity improve in hybrid metallic nanofluids.
The effect of single (Cu or Ag) and hybrid (Cu+Ag) metallic nanoparticles on the thermophysical properties, namely viscosity and thermal conductivity of water-based nanofluids, has been studied using Equilibrium Molecular dynamics (EMD) simulation. The TIP3P (three-site transferrable intermolecular potential) water model has been chosen. The interaction of water molecules has been modelled by the Lennard-Jones (L J) potential in combination with Coulomb potential. The embedded-atom (EAM) potential method has been used for hybrid (Cu and Ag) atom interaction. Simulation has been performed at 303 K and atmospheric pressure using the Berendsen algorithm under NVT (constant number, constant volume, and constant temperature) ensemble with production steps of 2 ns and integral step of 1fs. Interestingly, nanofluids containing one metallic nanoparticle (Cu or Ag) have lower thermal conductivity and viscosity than nanofluids having hybrid metallic nanoparticles with the same volume fraction.</description><subject>Equilibrium molecular dynamic simulation</subject><subject>Hybrid metallic nanofluids</subject><subject>Loaded metallic nanoparticles</subject><subject>Nanolayer</subject><subject>Thermal resistance</subject><issn>2667-3126</issn><issn>2667-3126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UctOwzAQjBBIIOgPcPIPpPiROA3igqBAJRAXOFsbe9O4cuJip6B-AP-NSxHixGlXq5nZnZ0sO2d0yiiTF6upHkeYcsp5GlBay4PshEtZ5YJxefinP84mMa4ShM8YE5SdZJ_zoYNBoyFjh6H3624brQZH1sGvMYwWI_Et-YARQ95ATMBoh6VDAoMh3bYJ1pAeR3DOajLA4Fu3sSZeksUQ7bIbI2mD78n8bWOdTehNT568Q71xEMjtdoDe6niWHbXgIk5-6mn2ejd_uXnIH5_vFzfXj7kWvJR5UzKYFcWsZKVphcaqNkYCo4IKAVS0tEYtNZcVr7hhAGWtG0mNYdJUgoMUp9lir2s8rNQ62B7CVnmw6nvgw1JB8qwdKmywLWRTV7TUhQQJBTKBaatgM5RFmbT4XksHH2PA9lePUbXLRa3ULhe1y0Xtc0mkqz0Jk8t3i0FFbXH3fxtQj-kM-x_9CzgRmNs</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Shit, Sakti Pada</creator><creator>Pal, Sudipta</creator><creator>Ghosh, N.K.</creator><creator>Sau, Kartik</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2790-2410</orcidid></search><sort><creationdate>202212</creationdate><title>Enhanced thermophysical properties of water-based single and hybrid metallic nanofluids: Insights from Equilibrium Molecular Dynamics</title><author>Shit, Sakti Pada ; Pal, Sudipta ; Ghosh, N.K. ; Sau, Kartik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3256-b51a8448515df3ce79dd6a103033a03f09ec6c267272d1aa59cb60dd16d732a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Equilibrium molecular dynamic simulation</topic><topic>Hybrid metallic nanofluids</topic><topic>Loaded metallic nanoparticles</topic><topic>Nanolayer</topic><topic>Thermal resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shit, Sakti Pada</creatorcontrib><creatorcontrib>Pal, Sudipta</creatorcontrib><creatorcontrib>Ghosh, N.K.</creatorcontrib><creatorcontrib>Sau, Kartik</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Chemical thermodynamics and thermal analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shit, Sakti Pada</au><au>Pal, Sudipta</au><au>Ghosh, N.K.</au><au>Sau, Kartik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced thermophysical properties of water-based single and hybrid metallic nanofluids: Insights from Equilibrium Molecular Dynamics</atitle><jtitle>Chemical thermodynamics and thermal analysis</jtitle><date>2022-12</date><risdate>2022</risdate><volume>8</volume><spage>100096</spage><pages>100096-</pages><artnum>100096</artnum><issn>2667-3126</issn><eissn>2667-3126</eissn><abstract>•Thermal conductivity and viscosity of water-based nanofluids have been studied using the Equilibrium Molecular dynamics (EMD) simulation.•The simulation has been performed under NVT (constant number, constant volume, and constant temperature) ensemble•Thermal conductivity and viscosity improve in hybrid metallic nanofluids.
The effect of single (Cu or Ag) and hybrid (Cu+Ag) metallic nanoparticles on the thermophysical properties, namely viscosity and thermal conductivity of water-based nanofluids, has been studied using Equilibrium Molecular dynamics (EMD) simulation. The TIP3P (three-site transferrable intermolecular potential) water model has been chosen. The interaction of water molecules has been modelled by the Lennard-Jones (L J) potential in combination with Coulomb potential. The embedded-atom (EAM) potential method has been used for hybrid (Cu and Ag) atom interaction. Simulation has been performed at 303 K and atmospheric pressure using the Berendsen algorithm under NVT (constant number, constant volume, and constant temperature) ensemble with production steps of 2 ns and integral step of 1fs. Interestingly, nanofluids containing one metallic nanoparticle (Cu or Ag) have lower thermal conductivity and viscosity than nanofluids having hybrid metallic nanoparticles with the same volume fraction.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ctta.2022.100096</doi><orcidid>https://orcid.org/0000-0003-2790-2410</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2667-3126 |
ispartof | Chemical thermodynamics and thermal analysis, 2022-12, Vol.8, p.100096, Article 100096 |
issn | 2667-3126 2667-3126 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ebef46b9705c46a6a4e13ef3c318e645 |
source | ScienceDirect Journals |
subjects | Equilibrium molecular dynamic simulation Hybrid metallic nanofluids Loaded metallic nanoparticles Nanolayer Thermal resistance |
title | Enhanced thermophysical properties of water-based single and hybrid metallic nanofluids: Insights from Equilibrium Molecular Dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A47%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20thermophysical%20properties%20of%20water-based%20single%20and%20hybrid%20metallic%20nanofluids:%20Insights%20from%20Equilibrium%20Molecular%20Dynamics&rft.jtitle=Chemical%20thermodynamics%20and%20thermal%20analysis&rft.au=Shit,%20Sakti%20Pada&rft.date=2022-12&rft.volume=8&rft.spage=100096&rft.pages=100096-&rft.artnum=100096&rft.issn=2667-3126&rft.eissn=2667-3126&rft_id=info:doi/10.1016/j.ctta.2022.100096&rft_dat=%3Celsevier_doaj_%3ES2667312622000621%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3256-b51a8448515df3ce79dd6a103033a03f09ec6c267272d1aa59cb60dd16d732a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |