Loading…

Molecular mechanisms underlying diabetic microvascular complications

Vascular complications are a major cause of morbidity and mortality in patients with diabetes mellitus. Diabetic microvascular complications include diabetic retinopathy, neuropathy and nephropathy. Hyperglycaemia-induced activation of metabolic pathways, hyperglycaemia-induced growth factors, compo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Clinical and Scientific Research 2016-04, Vol.5 (2), p.112-123
Main Authors: Bitla AR, Harini Devi N
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 123
container_issue 2
container_start_page 112
container_title Journal of Clinical and Scientific Research
container_volume 5
creator Bitla AR
Harini Devi N
Harini Devi N
description Vascular complications are a major cause of morbidity and mortality in patients with diabetes mellitus. Diabetic microvascular complications include diabetic retinopathy, neuropathy and nephropathy. Hyperglycaemia-induced activation of metabolic pathways, hyperglycaemia-induced growth factors, components of metabolic syndrome and hyperglycaemia-induced epigenetic changes act through a common platform i.e endothelial dysfunction. Hyperglycaemia, is the initiating cause of diabetic tissue damage. Under conditions of hyperglycaemia, four important pathways are activated which shuttle glucose and its intermediates through alternate pathways especially the polyol pathway forming sorbitol which exerts an osmotic effect; advanced glycation end products which modify biomolecules and alter their functions; protein kinase C activation causing altered signal transduction and hexosamine pathway which forms uridine diphosphate) N-acetyl glucosamine which glycosylates transcription factors and increases expression of procoagulant molecules. Hyperglycaemia is thought to activate these four pathways through increased generation of superoxide anions. Though hyperglycaemia is thought to be essential to cause clinically important microangiopathy, there are other factors which predispose an individual to these complications. Hyperglyca-emiainduced epigenetic changes i.e., changes in the deoxyribonucleic acid (DNA) molecule due to causes outside the DNA molecule are currently being probed for their role in development and progression of vascular complications. The ultimate purpose of understanding these mechanisms is to devise therapeutic measures which will target these mechanisms and will help in preventing the development as well as delaying the progression of diabetic vascular complications and improve the quality of life in these patients.
doi_str_mv 10.15380/2277-5706.JCSR.16.01.003
format article
fullrecord <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ec009c1b8aa44e62bf91b1d91a29a961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ec009c1b8aa44e62bf91b1d91a29a961</doaj_id><sourcerecordid>oai_doaj_org_article_ec009c1b8aa44e62bf91b1d91a29a961</sourcerecordid><originalsourceid>FETCH-doaj_primary_oai_doaj_org_article_ec009c1b8aa44e62bf91b1d91a29a9613</originalsourceid><addsrcrecordid>eNqtjMFOAyEURYmxiY3tP4wfUOQNMzCsq0ZN3Kh78mBofQaGBlqT_r1a-wmu7s29J4exGxAcejmI27bVetVrofjz-u2Vg-ICuBDygs1P1yB7fXnuv9gVW9ZKTvSgZNdpPWd3LzkGf4hYmhT8B05UU20O0xhKPNK0bUZCF_bkm0S-5C-sf7DPaRfJ457yVBdstsFYw_Kc1-zp4f59_bgaM37aXaGE5Wgzkj0NuWwtlh9nDDZ4IYwHNyB2XVCt2xhwMBrA1qBRIP_T9Q238F9v</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular mechanisms underlying diabetic microvascular complications</title><source>Medknow Open Access Medical Journals</source><creator>Bitla AR ; Harini Devi N ; Harini Devi N</creator><creatorcontrib>Bitla AR ; Harini Devi N ; Harini Devi N</creatorcontrib><description>Vascular complications are a major cause of morbidity and mortality in patients with diabetes mellitus. Diabetic microvascular complications include diabetic retinopathy, neuropathy and nephropathy. Hyperglycaemia-induced activation of metabolic pathways, hyperglycaemia-induced growth factors, components of metabolic syndrome and hyperglycaemia-induced epigenetic changes act through a common platform i.e endothelial dysfunction. Hyperglycaemia, is the initiating cause of diabetic tissue damage. Under conditions of hyperglycaemia, four important pathways are activated which shuttle glucose and its intermediates through alternate pathways especially the polyol pathway forming sorbitol which exerts an osmotic effect; advanced glycation end products which modify biomolecules and alter their functions; protein kinase C activation causing altered signal transduction and hexosamine pathway which forms uridine diphosphate) N-acetyl glucosamine which glycosylates transcription factors and increases expression of procoagulant molecules. Hyperglycaemia is thought to activate these four pathways through increased generation of superoxide anions. Though hyperglycaemia is thought to be essential to cause clinically important microangiopathy, there are other factors which predispose an individual to these complications. Hyperglyca-emiainduced epigenetic changes i.e., changes in the deoxyribonucleic acid (DNA) molecule due to causes outside the DNA molecule are currently being probed for their role in development and progression of vascular complications. The ultimate purpose of understanding these mechanisms is to devise therapeutic measures which will target these mechanisms and will help in preventing the development as well as delaying the progression of diabetic vascular complications and improve the quality of life in these patients.</description><identifier>ISSN: 2277-5706</identifier><identifier>EISSN: 2277-8357</identifier><identifier>DOI: 10.15380/2277-5706.JCSR.16.01.003</identifier><language>eng</language><publisher>Wolters Kluwer Medknow Publications</publisher><subject>Diabetes mellitus ; Endothelial dysfunction ; Epigenetics ; Microvascular; Hyperglycaemia</subject><ispartof>Journal of Clinical and Scientific Research, 2016-04, Vol.5 (2), p.112-123</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bitla AR</creatorcontrib><creatorcontrib>Harini Devi N</creatorcontrib><creatorcontrib>Harini Devi N</creatorcontrib><title>Molecular mechanisms underlying diabetic microvascular complications</title><title>Journal of Clinical and Scientific Research</title><description>Vascular complications are a major cause of morbidity and mortality in patients with diabetes mellitus. Diabetic microvascular complications include diabetic retinopathy, neuropathy and nephropathy. Hyperglycaemia-induced activation of metabolic pathways, hyperglycaemia-induced growth factors, components of metabolic syndrome and hyperglycaemia-induced epigenetic changes act through a common platform i.e endothelial dysfunction. Hyperglycaemia, is the initiating cause of diabetic tissue damage. Under conditions of hyperglycaemia, four important pathways are activated which shuttle glucose and its intermediates through alternate pathways especially the polyol pathway forming sorbitol which exerts an osmotic effect; advanced glycation end products which modify biomolecules and alter their functions; protein kinase C activation causing altered signal transduction and hexosamine pathway which forms uridine diphosphate) N-acetyl glucosamine which glycosylates transcription factors and increases expression of procoagulant molecules. Hyperglycaemia is thought to activate these four pathways through increased generation of superoxide anions. Though hyperglycaemia is thought to be essential to cause clinically important microangiopathy, there are other factors which predispose an individual to these complications. Hyperglyca-emiainduced epigenetic changes i.e., changes in the deoxyribonucleic acid (DNA) molecule due to causes outside the DNA molecule are currently being probed for their role in development and progression of vascular complications. The ultimate purpose of understanding these mechanisms is to devise therapeutic measures which will target these mechanisms and will help in preventing the development as well as delaying the progression of diabetic vascular complications and improve the quality of life in these patients.</description><subject>Diabetes mellitus</subject><subject>Endothelial dysfunction</subject><subject>Epigenetics</subject><subject>Microvascular; Hyperglycaemia</subject><issn>2277-5706</issn><issn>2277-8357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqtjMFOAyEURYmxiY3tP4wfUOQNMzCsq0ZN3Kh78mBofQaGBlqT_r1a-wmu7s29J4exGxAcejmI27bVetVrofjz-u2Vg-ICuBDygs1P1yB7fXnuv9gVW9ZKTvSgZNdpPWd3LzkGf4hYmhT8B05UU20O0xhKPNK0bUZCF_bkm0S-5C-sf7DPaRfJ457yVBdstsFYw_Kc1-zp4f59_bgaM37aXaGE5Wgzkj0NuWwtlh9nDDZ4IYwHNyB2XVCt2xhwMBrA1qBRIP_T9Q238F9v</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Bitla AR</creator><creator>Harini Devi N</creator><creator>Harini Devi N</creator><general>Wolters Kluwer Medknow Publications</general><scope>DOA</scope></search><sort><creationdate>20160401</creationdate><title>Molecular mechanisms underlying diabetic microvascular complications</title><author>Bitla AR ; Harini Devi N ; Harini Devi N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-doaj_primary_oai_doaj_org_article_ec009c1b8aa44e62bf91b1d91a29a9613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Diabetes mellitus</topic><topic>Endothelial dysfunction</topic><topic>Epigenetics</topic><topic>Microvascular; Hyperglycaemia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bitla AR</creatorcontrib><creatorcontrib>Harini Devi N</creatorcontrib><creatorcontrib>Harini Devi N</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Clinical and Scientific Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bitla AR</au><au>Harini Devi N</au><au>Harini Devi N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanisms underlying diabetic microvascular complications</atitle><jtitle>Journal of Clinical and Scientific Research</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>5</volume><issue>2</issue><spage>112</spage><epage>123</epage><pages>112-123</pages><issn>2277-5706</issn><eissn>2277-8357</eissn><abstract>Vascular complications are a major cause of morbidity and mortality in patients with diabetes mellitus. Diabetic microvascular complications include diabetic retinopathy, neuropathy and nephropathy. Hyperglycaemia-induced activation of metabolic pathways, hyperglycaemia-induced growth factors, components of metabolic syndrome and hyperglycaemia-induced epigenetic changes act through a common platform i.e endothelial dysfunction. Hyperglycaemia, is the initiating cause of diabetic tissue damage. Under conditions of hyperglycaemia, four important pathways are activated which shuttle glucose and its intermediates through alternate pathways especially the polyol pathway forming sorbitol which exerts an osmotic effect; advanced glycation end products which modify biomolecules and alter their functions; protein kinase C activation causing altered signal transduction and hexosamine pathway which forms uridine diphosphate) N-acetyl glucosamine which glycosylates transcription factors and increases expression of procoagulant molecules. Hyperglycaemia is thought to activate these four pathways through increased generation of superoxide anions. Though hyperglycaemia is thought to be essential to cause clinically important microangiopathy, there are other factors which predispose an individual to these complications. Hyperglyca-emiainduced epigenetic changes i.e., changes in the deoxyribonucleic acid (DNA) molecule due to causes outside the DNA molecule are currently being probed for their role in development and progression of vascular complications. The ultimate purpose of understanding these mechanisms is to devise therapeutic measures which will target these mechanisms and will help in preventing the development as well as delaying the progression of diabetic vascular complications and improve the quality of life in these patients.</abstract><pub>Wolters Kluwer Medknow Publications</pub><doi>10.15380/2277-5706.JCSR.16.01.003</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2277-5706
ispartof Journal of Clinical and Scientific Research, 2016-04, Vol.5 (2), p.112-123
issn 2277-5706
2277-8357
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ec009c1b8aa44e62bf91b1d91a29a961
source Medknow Open Access Medical Journals
subjects Diabetes mellitus
Endothelial dysfunction
Epigenetics
Microvascular
Hyperglycaemia
title Molecular mechanisms underlying diabetic microvascular complications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanisms%20underlying%20diabetic%20microvascular%20complications&rft.jtitle=Journal%20of%20Clinical%20and%20Scientific%20Research&rft.au=Bitla%20AR&rft.date=2016-04-01&rft.volume=5&rft.issue=2&rft.spage=112&rft.epage=123&rft.pages=112-123&rft.issn=2277-5706&rft.eissn=2277-8357&rft_id=info:doi/10.15380/2277-5706.JCSR.16.01.003&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_ec009c1b8aa44e62bf91b1d91a29a961%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-doaj_primary_oai_doaj_org_article_ec009c1b8aa44e62bf91b1d91a29a9613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true