Loading…

STGNN-FAM: A Traffic Flow Prediction Model for Spatiotemporal Graph Networks Based on Fusion of Attention Mechanisms

Network traffic state prediction has been constantly challenged by complex spatiotemporal features of traffic information as well as imperfection in streaming data. This paper proposes a traffic flow prediction model for spatiotemporal graph networks based on fusion of attention mechanisms (STGNN-FA...

Full description

Saved in:
Bibliographic Details
Published in:Journal of advanced transportation 2023-05, Vol.2023, p.1-19
Main Authors: Qi, Xueying, Hu, Weijian, Li, Baoshan, Han, Ke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c474t-c095570b3fd3ed64175693d9074c6534500b78b4ce4ce9c1dd190cdc1d5dcfcf3
container_end_page 19
container_issue
container_start_page 1
container_title Journal of advanced transportation
container_volume 2023
creator Qi, Xueying
Hu, Weijian
Li, Baoshan
Han, Ke
description Network traffic state prediction has been constantly challenged by complex spatiotemporal features of traffic information as well as imperfection in streaming data. This paper proposes a traffic flow prediction model for spatiotemporal graph networks based on fusion of attention mechanisms (STGNN-FAM) to simultaneously tackle these challenges. This model contains a spatial feature extraction layer, a bidirectional temporal feature extraction layer, and an attention fusion layer, which not only fully considers the temporal and spatial features of the traffic flow problem but also uses the attention mechanism to enhance the critical temporal and spatial features to achieve more accurate and robust predictions. Experimental results on a network traffic speed dataset PeMSD7 show that the proposed STGNN-FAM outperforms several important benchmarks in prediction accuracy and the ability to withstand interference in the data stream, especially for mid- and long-term prediction of 30 minutes and 45 minutes.
doi_str_mv 10.1155/2023/8880530
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ec0ee110b5614a01ad8c86fdc757138f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751744348</galeid><doaj_id>oai_doaj_org_article_ec0ee110b5614a01ad8c86fdc757138f</doaj_id><sourcerecordid>A751744348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c095570b3fd3ed64175693d9074c6534500b78b4ce4ce9c1dd190cdc1d5dcfcf3</originalsourceid><addsrcrecordid>eNp9klGPEyEUhSdGE-vqmz-AxEedXRhgmPFt3Ni6yW412fpMGLhMqdOhAk3jv5c6G-NDYyBccvOdAzm5RfGW4GtCOL-pcEVvmqbBnOJnxaLCrCopafnzYoFJK8paVO3L4lWMO4xpy1u2KNLjZrVel8vu4SPq0CYoa51Gy9Gf0LcAxunk_IQevIERWR_Q40HlToL9wQc1olVQhy1aQzr58COiTyqCQVmwPMazzlvUpQTTbAJ6qyYX9_F18cKqMcKbp3pVfF9-3tx-Ke-_ru5uu_tSM8FSqXHLucA9tYaCqRkRvG6pabFguuaUcYx70fRMQ96tJsaQFmuTL9xoqy29Ku5mX-PVTh6C26vwS3rl5J-GD4NUITk9ggSNAQjBPa8JU5go0-imtkYLLghtzl7vZq9D8D-PEJPc-WOY8vdl1VQVqfLbJFPlTA0qm7rJ-hSUHmCCnJafwLrc7gQngjHKmsxfX-DzMrB3-qLgwz-CPsc8QcxHdMM2xUEdY7yI6-BjDGD_pkCwPM-MPM-MfJqZjL-f8a2bjDq5_9O_AUnOvq4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822121901</pqid></control><display><type>article</type><title>STGNN-FAM: A Traffic Flow Prediction Model for Spatiotemporal Graph Networks Based on Fusion of Attention Mechanisms</title><source>Wiley Online Library Open Access</source><source>ABI/INFORM Global</source><source>Publicly Available Content (ProQuest)</source><creator>Qi, Xueying ; Hu, Weijian ; Li, Baoshan ; Han, Ke</creator><contributor>Li, Ruimin ; Ruimin Li</contributor><creatorcontrib>Qi, Xueying ; Hu, Weijian ; Li, Baoshan ; Han, Ke ; Li, Ruimin ; Ruimin Li</creatorcontrib><description>Network traffic state prediction has been constantly challenged by complex spatiotemporal features of traffic information as well as imperfection in streaming data. This paper proposes a traffic flow prediction model for spatiotemporal graph networks based on fusion of attention mechanisms (STGNN-FAM) to simultaneously tackle these challenges. This model contains a spatial feature extraction layer, a bidirectional temporal feature extraction layer, and an attention fusion layer, which not only fully considers the temporal and spatial features of the traffic flow problem but also uses the attention mechanism to enhance the critical temporal and spatial features to achieve more accurate and robust predictions. Experimental results on a network traffic speed dataset PeMSD7 show that the proposed STGNN-FAM outperforms several important benchmarks in prediction accuracy and the ability to withstand interference in the data stream, especially for mid- and long-term prediction of 30 minutes and 45 minutes.</description><identifier>ISSN: 0197-6729</identifier><identifier>EISSN: 2042-3195</identifier><identifier>DOI: 10.1155/2023/8880530</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Accuracy ; Benchmarks ; Communications traffic ; Data transmission ; Deep learning ; Feature extraction ; Kalman filters ; Machine learning ; Methods ; Neural networks ; Prediction models ; Queuing theory ; Roads &amp; highways ; Sensors ; Time series ; Traffic flow ; Traffic information ; Traffic models ; Traffic speed ; Transportation</subject><ispartof>Journal of advanced transportation, 2023-05, Vol.2023, p.1-19</ispartof><rights>Copyright © 2023 Xueying Qi et al.</rights><rights>COPYRIGHT 2023 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2023 Xueying Qi et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c474t-c095570b3fd3ed64175693d9074c6534500b78b4ce4ce9c1dd190cdc1d5dcfcf3</cites><orcidid>0000-0003-3529-6246 ; 0000-0002-0650-8396 ; 0000-0002-0046-0010 ; 0009-0002-5072-1896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2822121901/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2822121901?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11687,25752,27923,27924,36059,37011,44362,44589,74666,74897</link.rule.ids></links><search><contributor>Li, Ruimin</contributor><contributor>Ruimin Li</contributor><creatorcontrib>Qi, Xueying</creatorcontrib><creatorcontrib>Hu, Weijian</creatorcontrib><creatorcontrib>Li, Baoshan</creatorcontrib><creatorcontrib>Han, Ke</creatorcontrib><title>STGNN-FAM: A Traffic Flow Prediction Model for Spatiotemporal Graph Networks Based on Fusion of Attention Mechanisms</title><title>Journal of advanced transportation</title><description>Network traffic state prediction has been constantly challenged by complex spatiotemporal features of traffic information as well as imperfection in streaming data. This paper proposes a traffic flow prediction model for spatiotemporal graph networks based on fusion of attention mechanisms (STGNN-FAM) to simultaneously tackle these challenges. This model contains a spatial feature extraction layer, a bidirectional temporal feature extraction layer, and an attention fusion layer, which not only fully considers the temporal and spatial features of the traffic flow problem but also uses the attention mechanism to enhance the critical temporal and spatial features to achieve more accurate and robust predictions. Experimental results on a network traffic speed dataset PeMSD7 show that the proposed STGNN-FAM outperforms several important benchmarks in prediction accuracy and the ability to withstand interference in the data stream, especially for mid- and long-term prediction of 30 minutes and 45 minutes.</description><subject>Accuracy</subject><subject>Benchmarks</subject><subject>Communications traffic</subject><subject>Data transmission</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Kalman filters</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Prediction models</subject><subject>Queuing theory</subject><subject>Roads &amp; highways</subject><subject>Sensors</subject><subject>Time series</subject><subject>Traffic flow</subject><subject>Traffic information</subject><subject>Traffic models</subject><subject>Traffic speed</subject><subject>Transportation</subject><issn>0197-6729</issn><issn>2042-3195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9klGPEyEUhSdGE-vqmz-AxEedXRhgmPFt3Ni6yW412fpMGLhMqdOhAk3jv5c6G-NDYyBccvOdAzm5RfGW4GtCOL-pcEVvmqbBnOJnxaLCrCopafnzYoFJK8paVO3L4lWMO4xpy1u2KNLjZrVel8vu4SPq0CYoa51Gy9Gf0LcAxunk_IQevIERWR_Q40HlToL9wQc1olVQhy1aQzr58COiTyqCQVmwPMazzlvUpQTTbAJ6qyYX9_F18cKqMcKbp3pVfF9-3tx-Ke-_ru5uu_tSM8FSqXHLucA9tYaCqRkRvG6pabFguuaUcYx70fRMQ96tJsaQFmuTL9xoqy29Ku5mX-PVTh6C26vwS3rl5J-GD4NUITk9ggSNAQjBPa8JU5go0-imtkYLLghtzl7vZq9D8D-PEJPc-WOY8vdl1VQVqfLbJFPlTA0qm7rJ-hSUHmCCnJafwLrc7gQngjHKmsxfX-DzMrB3-qLgwz-CPsc8QcxHdMM2xUEdY7yI6-BjDGD_pkCwPM-MPM-MfJqZjL-f8a2bjDq5_9O_AUnOvq4</recordid><startdate>20230524</startdate><enddate>20230524</enddate><creator>Qi, Xueying</creator><creator>Hu, Weijian</creator><creator>Li, Baoshan</creator><creator>Han, Ke</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>3V.</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3529-6246</orcidid><orcidid>https://orcid.org/0000-0002-0650-8396</orcidid><orcidid>https://orcid.org/0000-0002-0046-0010</orcidid><orcidid>https://orcid.org/0009-0002-5072-1896</orcidid></search><sort><creationdate>20230524</creationdate><title>STGNN-FAM: A Traffic Flow Prediction Model for Spatiotemporal Graph Networks Based on Fusion of Attention Mechanisms</title><author>Qi, Xueying ; Hu, Weijian ; Li, Baoshan ; Han, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c095570b3fd3ed64175693d9074c6534500b78b4ce4ce9c1dd190cdc1d5dcfcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Benchmarks</topic><topic>Communications traffic</topic><topic>Data transmission</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Kalman filters</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Prediction models</topic><topic>Queuing theory</topic><topic>Roads &amp; highways</topic><topic>Sensors</topic><topic>Time series</topic><topic>Traffic flow</topic><topic>Traffic information</topic><topic>Traffic models</topic><topic>Traffic speed</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Xueying</creatorcontrib><creatorcontrib>Hu, Weijian</creatorcontrib><creatorcontrib>Li, Baoshan</creatorcontrib><creatorcontrib>Han, Ke</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>DAOJ: Directory of Open Access Journals</collection><jtitle>Journal of advanced transportation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Xueying</au><au>Hu, Weijian</au><au>Li, Baoshan</au><au>Han, Ke</au><au>Li, Ruimin</au><au>Ruimin Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STGNN-FAM: A Traffic Flow Prediction Model for Spatiotemporal Graph Networks Based on Fusion of Attention Mechanisms</atitle><jtitle>Journal of advanced transportation</jtitle><date>2023-05-24</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0197-6729</issn><eissn>2042-3195</eissn><abstract>Network traffic state prediction has been constantly challenged by complex spatiotemporal features of traffic information as well as imperfection in streaming data. This paper proposes a traffic flow prediction model for spatiotemporal graph networks based on fusion of attention mechanisms (STGNN-FAM) to simultaneously tackle these challenges. This model contains a spatial feature extraction layer, a bidirectional temporal feature extraction layer, and an attention fusion layer, which not only fully considers the temporal and spatial features of the traffic flow problem but also uses the attention mechanism to enhance the critical temporal and spatial features to achieve more accurate and robust predictions. Experimental results on a network traffic speed dataset PeMSD7 show that the proposed STGNN-FAM outperforms several important benchmarks in prediction accuracy and the ability to withstand interference in the data stream, especially for mid- and long-term prediction of 30 minutes and 45 minutes.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2023/8880530</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3529-6246</orcidid><orcidid>https://orcid.org/0000-0002-0650-8396</orcidid><orcidid>https://orcid.org/0000-0002-0046-0010</orcidid><orcidid>https://orcid.org/0009-0002-5072-1896</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0197-6729
ispartof Journal of advanced transportation, 2023-05, Vol.2023, p.1-19
issn 0197-6729
2042-3195
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ec0ee110b5614a01ad8c86fdc757138f
source Wiley Online Library Open Access; ABI/INFORM Global; Publicly Available Content (ProQuest)
subjects Accuracy
Benchmarks
Communications traffic
Data transmission
Deep learning
Feature extraction
Kalman filters
Machine learning
Methods
Neural networks
Prediction models
Queuing theory
Roads & highways
Sensors
Time series
Traffic flow
Traffic information
Traffic models
Traffic speed
Transportation
title STGNN-FAM: A Traffic Flow Prediction Model for Spatiotemporal Graph Networks Based on Fusion of Attention Mechanisms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A24%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STGNN-FAM:%20A%20Traffic%20Flow%20Prediction%20Model%20for%20Spatiotemporal%20Graph%20Networks%20Based%20on%20Fusion%20of%20Attention%20Mechanisms&rft.jtitle=Journal%20of%20advanced%20transportation&rft.au=Qi,%20Xueying&rft.date=2023-05-24&rft.volume=2023&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0197-6729&rft.eissn=2042-3195&rft_id=info:doi/10.1155/2023/8880530&rft_dat=%3Cgale_doaj_%3EA751744348%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-c095570b3fd3ed64175693d9074c6534500b78b4ce4ce9c1dd190cdc1d5dcfcf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2822121901&rft_id=info:pmid/&rft_galeid=A751744348&rfr_iscdi=true