Loading…
STGNN-FAM: A Traffic Flow Prediction Model for Spatiotemporal Graph Networks Based on Fusion of Attention Mechanisms
Network traffic state prediction has been constantly challenged by complex spatiotemporal features of traffic information as well as imperfection in streaming data. This paper proposes a traffic flow prediction model for spatiotemporal graph networks based on fusion of attention mechanisms (STGNN-FA...
Saved in:
Published in: | Journal of advanced transportation 2023-05, Vol.2023, p.1-19 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-c095570b3fd3ed64175693d9074c6534500b78b4ce4ce9c1dd190cdc1d5dcfcf3 |
container_end_page | 19 |
container_issue | |
container_start_page | 1 |
container_title | Journal of advanced transportation |
container_volume | 2023 |
creator | Qi, Xueying Hu, Weijian Li, Baoshan Han, Ke |
description | Network traffic state prediction has been constantly challenged by complex spatiotemporal features of traffic information as well as imperfection in streaming data. This paper proposes a traffic flow prediction model for spatiotemporal graph networks based on fusion of attention mechanisms (STGNN-FAM) to simultaneously tackle these challenges. This model contains a spatial feature extraction layer, a bidirectional temporal feature extraction layer, and an attention fusion layer, which not only fully considers the temporal and spatial features of the traffic flow problem but also uses the attention mechanism to enhance the critical temporal and spatial features to achieve more accurate and robust predictions. Experimental results on a network traffic speed dataset PeMSD7 show that the proposed STGNN-FAM outperforms several important benchmarks in prediction accuracy and the ability to withstand interference in the data stream, especially for mid- and long-term prediction of 30 minutes and 45 minutes. |
doi_str_mv | 10.1155/2023/8880530 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ec0ee110b5614a01ad8c86fdc757138f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751744348</galeid><doaj_id>oai_doaj_org_article_ec0ee110b5614a01ad8c86fdc757138f</doaj_id><sourcerecordid>A751744348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c095570b3fd3ed64175693d9074c6534500b78b4ce4ce9c1dd190cdc1d5dcfcf3</originalsourceid><addsrcrecordid>eNp9klGPEyEUhSdGE-vqmz-AxEedXRhgmPFt3Ni6yW412fpMGLhMqdOhAk3jv5c6G-NDYyBccvOdAzm5RfGW4GtCOL-pcEVvmqbBnOJnxaLCrCopafnzYoFJK8paVO3L4lWMO4xpy1u2KNLjZrVel8vu4SPq0CYoa51Gy9Gf0LcAxunk_IQevIERWR_Q40HlToL9wQc1olVQhy1aQzr58COiTyqCQVmwPMazzlvUpQTTbAJ6qyYX9_F18cKqMcKbp3pVfF9-3tx-Ke-_ru5uu_tSM8FSqXHLucA9tYaCqRkRvG6pabFguuaUcYx70fRMQ96tJsaQFmuTL9xoqy29Ku5mX-PVTh6C26vwS3rl5J-GD4NUITk9ggSNAQjBPa8JU5go0-imtkYLLghtzl7vZq9D8D-PEJPc-WOY8vdl1VQVqfLbJFPlTA0qm7rJ-hSUHmCCnJafwLrc7gQngjHKmsxfX-DzMrB3-qLgwz-CPsc8QcxHdMM2xUEdY7yI6-BjDGD_pkCwPM-MPM-MfJqZjL-f8a2bjDq5_9O_AUnOvq4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822121901</pqid></control><display><type>article</type><title>STGNN-FAM: A Traffic Flow Prediction Model for Spatiotemporal Graph Networks Based on Fusion of Attention Mechanisms</title><source>Wiley Online Library Open Access</source><source>ABI/INFORM Global</source><source>Publicly Available Content (ProQuest)</source><creator>Qi, Xueying ; Hu, Weijian ; Li, Baoshan ; Han, Ke</creator><contributor>Li, Ruimin ; Ruimin Li</contributor><creatorcontrib>Qi, Xueying ; Hu, Weijian ; Li, Baoshan ; Han, Ke ; Li, Ruimin ; Ruimin Li</creatorcontrib><description>Network traffic state prediction has been constantly challenged by complex spatiotemporal features of traffic information as well as imperfection in streaming data. This paper proposes a traffic flow prediction model for spatiotemporal graph networks based on fusion of attention mechanisms (STGNN-FAM) to simultaneously tackle these challenges. This model contains a spatial feature extraction layer, a bidirectional temporal feature extraction layer, and an attention fusion layer, which not only fully considers the temporal and spatial features of the traffic flow problem but also uses the attention mechanism to enhance the critical temporal and spatial features to achieve more accurate and robust predictions. Experimental results on a network traffic speed dataset PeMSD7 show that the proposed STGNN-FAM outperforms several important benchmarks in prediction accuracy and the ability to withstand interference in the data stream, especially for mid- and long-term prediction of 30 minutes and 45 minutes.</description><identifier>ISSN: 0197-6729</identifier><identifier>EISSN: 2042-3195</identifier><identifier>DOI: 10.1155/2023/8880530</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Accuracy ; Benchmarks ; Communications traffic ; Data transmission ; Deep learning ; Feature extraction ; Kalman filters ; Machine learning ; Methods ; Neural networks ; Prediction models ; Queuing theory ; Roads & highways ; Sensors ; Time series ; Traffic flow ; Traffic information ; Traffic models ; Traffic speed ; Transportation</subject><ispartof>Journal of advanced transportation, 2023-05, Vol.2023, p.1-19</ispartof><rights>Copyright © 2023 Xueying Qi et al.</rights><rights>COPYRIGHT 2023 John Wiley & Sons, Inc.</rights><rights>Copyright © 2023 Xueying Qi et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c474t-c095570b3fd3ed64175693d9074c6534500b78b4ce4ce9c1dd190cdc1d5dcfcf3</cites><orcidid>0000-0003-3529-6246 ; 0000-0002-0650-8396 ; 0000-0002-0046-0010 ; 0009-0002-5072-1896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2822121901/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2822121901?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11687,25752,27923,27924,36059,37011,44362,44589,74666,74897</link.rule.ids></links><search><contributor>Li, Ruimin</contributor><contributor>Ruimin Li</contributor><creatorcontrib>Qi, Xueying</creatorcontrib><creatorcontrib>Hu, Weijian</creatorcontrib><creatorcontrib>Li, Baoshan</creatorcontrib><creatorcontrib>Han, Ke</creatorcontrib><title>STGNN-FAM: A Traffic Flow Prediction Model for Spatiotemporal Graph Networks Based on Fusion of Attention Mechanisms</title><title>Journal of advanced transportation</title><description>Network traffic state prediction has been constantly challenged by complex spatiotemporal features of traffic information as well as imperfection in streaming data. This paper proposes a traffic flow prediction model for spatiotemporal graph networks based on fusion of attention mechanisms (STGNN-FAM) to simultaneously tackle these challenges. This model contains a spatial feature extraction layer, a bidirectional temporal feature extraction layer, and an attention fusion layer, which not only fully considers the temporal and spatial features of the traffic flow problem but also uses the attention mechanism to enhance the critical temporal and spatial features to achieve more accurate and robust predictions. Experimental results on a network traffic speed dataset PeMSD7 show that the proposed STGNN-FAM outperforms several important benchmarks in prediction accuracy and the ability to withstand interference in the data stream, especially for mid- and long-term prediction of 30 minutes and 45 minutes.</description><subject>Accuracy</subject><subject>Benchmarks</subject><subject>Communications traffic</subject><subject>Data transmission</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Kalman filters</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Prediction models</subject><subject>Queuing theory</subject><subject>Roads & highways</subject><subject>Sensors</subject><subject>Time series</subject><subject>Traffic flow</subject><subject>Traffic information</subject><subject>Traffic models</subject><subject>Traffic speed</subject><subject>Transportation</subject><issn>0197-6729</issn><issn>2042-3195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9klGPEyEUhSdGE-vqmz-AxEedXRhgmPFt3Ni6yW412fpMGLhMqdOhAk3jv5c6G-NDYyBccvOdAzm5RfGW4GtCOL-pcEVvmqbBnOJnxaLCrCopafnzYoFJK8paVO3L4lWMO4xpy1u2KNLjZrVel8vu4SPq0CYoa51Gy9Gf0LcAxunk_IQevIERWR_Q40HlToL9wQc1olVQhy1aQzr58COiTyqCQVmwPMazzlvUpQTTbAJ6qyYX9_F18cKqMcKbp3pVfF9-3tx-Ke-_ru5uu_tSM8FSqXHLucA9tYaCqRkRvG6pabFguuaUcYx70fRMQ96tJsaQFmuTL9xoqy29Ku5mX-PVTh6C26vwS3rl5J-GD4NUITk9ggSNAQjBPa8JU5go0-imtkYLLghtzl7vZq9D8D-PEJPc-WOY8vdl1VQVqfLbJFPlTA0qm7rJ-hSUHmCCnJafwLrc7gQngjHKmsxfX-DzMrB3-qLgwz-CPsc8QcxHdMM2xUEdY7yI6-BjDGD_pkCwPM-MPM-MfJqZjL-f8a2bjDq5_9O_AUnOvq4</recordid><startdate>20230524</startdate><enddate>20230524</enddate><creator>Qi, Xueying</creator><creator>Hu, Weijian</creator><creator>Li, Baoshan</creator><creator>Han, Ke</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>3V.</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3529-6246</orcidid><orcidid>https://orcid.org/0000-0002-0650-8396</orcidid><orcidid>https://orcid.org/0000-0002-0046-0010</orcidid><orcidid>https://orcid.org/0009-0002-5072-1896</orcidid></search><sort><creationdate>20230524</creationdate><title>STGNN-FAM: A Traffic Flow Prediction Model for Spatiotemporal Graph Networks Based on Fusion of Attention Mechanisms</title><author>Qi, Xueying ; Hu, Weijian ; Li, Baoshan ; Han, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c095570b3fd3ed64175693d9074c6534500b78b4ce4ce9c1dd190cdc1d5dcfcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Benchmarks</topic><topic>Communications traffic</topic><topic>Data transmission</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Kalman filters</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Prediction models</topic><topic>Queuing theory</topic><topic>Roads & highways</topic><topic>Sensors</topic><topic>Time series</topic><topic>Traffic flow</topic><topic>Traffic information</topic><topic>Traffic models</topic><topic>Traffic speed</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Xueying</creatorcontrib><creatorcontrib>Hu, Weijian</creatorcontrib><creatorcontrib>Li, Baoshan</creatorcontrib><creatorcontrib>Han, Ke</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>DAOJ: Directory of Open Access Journals</collection><jtitle>Journal of advanced transportation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Xueying</au><au>Hu, Weijian</au><au>Li, Baoshan</au><au>Han, Ke</au><au>Li, Ruimin</au><au>Ruimin Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STGNN-FAM: A Traffic Flow Prediction Model for Spatiotemporal Graph Networks Based on Fusion of Attention Mechanisms</atitle><jtitle>Journal of advanced transportation</jtitle><date>2023-05-24</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0197-6729</issn><eissn>2042-3195</eissn><abstract>Network traffic state prediction has been constantly challenged by complex spatiotemporal features of traffic information as well as imperfection in streaming data. This paper proposes a traffic flow prediction model for spatiotemporal graph networks based on fusion of attention mechanisms (STGNN-FAM) to simultaneously tackle these challenges. This model contains a spatial feature extraction layer, a bidirectional temporal feature extraction layer, and an attention fusion layer, which not only fully considers the temporal and spatial features of the traffic flow problem but also uses the attention mechanism to enhance the critical temporal and spatial features to achieve more accurate and robust predictions. Experimental results on a network traffic speed dataset PeMSD7 show that the proposed STGNN-FAM outperforms several important benchmarks in prediction accuracy and the ability to withstand interference in the data stream, especially for mid- and long-term prediction of 30 minutes and 45 minutes.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2023/8880530</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3529-6246</orcidid><orcidid>https://orcid.org/0000-0002-0650-8396</orcidid><orcidid>https://orcid.org/0000-0002-0046-0010</orcidid><orcidid>https://orcid.org/0009-0002-5072-1896</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0197-6729 |
ispartof | Journal of advanced transportation, 2023-05, Vol.2023, p.1-19 |
issn | 0197-6729 2042-3195 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ec0ee110b5614a01ad8c86fdc757138f |
source | Wiley Online Library Open Access; ABI/INFORM Global; Publicly Available Content (ProQuest) |
subjects | Accuracy Benchmarks Communications traffic Data transmission Deep learning Feature extraction Kalman filters Machine learning Methods Neural networks Prediction models Queuing theory Roads & highways Sensors Time series Traffic flow Traffic information Traffic models Traffic speed Transportation |
title | STGNN-FAM: A Traffic Flow Prediction Model for Spatiotemporal Graph Networks Based on Fusion of Attention Mechanisms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A24%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STGNN-FAM:%20A%20Traffic%20Flow%20Prediction%20Model%20for%20Spatiotemporal%20Graph%20Networks%20Based%20on%20Fusion%20of%20Attention%20Mechanisms&rft.jtitle=Journal%20of%20advanced%20transportation&rft.au=Qi,%20Xueying&rft.date=2023-05-24&rft.volume=2023&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0197-6729&rft.eissn=2042-3195&rft_id=info:doi/10.1155/2023/8880530&rft_dat=%3Cgale_doaj_%3EA751744348%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-c095570b3fd3ed64175693d9074c6534500b78b4ce4ce9c1dd190cdc1d5dcfcf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2822121901&rft_id=info:pmid/&rft_galeid=A751744348&rfr_iscdi=true |