Loading…
WDFY3 mutation alters laminar position and morphology of cortical neurons
Proper cerebral cortical development depends on the tightly orchestrated migration of newly born neurons from the inner ventricular and subventricular zones to the outer cortical plate. Any disturbance in this process during prenatal stages may lead to neuronal migration disorders (NMDs), which can...
Saved in:
Published in: | Molecular autism 2022-06, Vol.13 (1), p.27-12, Article 27 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c594t-44baef324a592a8806861ee8f4d18e832c2160be9a91d1a0a5dd68e1b85b59473 |
---|---|
cites | cdi_FETCH-LOGICAL-c594t-44baef324a592a8806861ee8f4d18e832c2160be9a91d1a0a5dd68e1b85b59473 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 27 |
container_title | Molecular autism |
container_volume | 13 |
creator | Schaaf, Zachary A Tat, Lyvin Cannizzaro, Noemi Panoutsopoulos, Alexios A Green, Ralph Rülicke, Thomas Hippenmeyer, Simon Zarbalis, Konstantinos S |
description | Proper cerebral cortical development depends on the tightly orchestrated migration of newly born neurons from the inner ventricular and subventricular zones to the outer cortical plate. Any disturbance in this process during prenatal stages may lead to neuronal migration disorders (NMDs), which can vary in extent from focal to global. Furthermore, NMDs show a substantial comorbidity with other neurodevelopmental disorders, notably autism spectrum disorders (ASDs). Our previous work demonstrated focal neuronal migration defects in mice carrying loss-of-function alleles of the recognized autism risk gene WDFY3. However, the cellular origins of these defects in Wdfy3 mutant mice remain elusive and uncovering it will provide critical insight into WDFY3-dependent disease pathology.
Here, in an effort to untangle the origins of NMDs in Wdfy3
mice, we employed mosaic analysis with double markers (MADM). MADM technology enabled us to genetically distinctly track and phenotypically analyze mutant and wild-type cells concomitantly in vivo using immunofluorescent techniques.
We revealed a cell autonomous requirement of WDFY3 for accurate laminar positioning of cortical projection neurons and elimination of mispositioned cells during early postnatal life. In addition, we identified significant deviations in dendritic arborization, as well as synaptic density and morphology between wild type, heterozygous, and homozygous Wdfy3 mutant neurons in Wdfy3-MADM reporter mice at postnatal stages.
While Wdfy3 mutant mice have provided valuable insight into prenatal aspects of ASD pathology that remain inaccessible to investigation in humans, like most animal models, they do not a perfectly replicate all aspects of human ASD biology. The lack of human data makes it indeterminate whether morphological deviations described here apply to ASD patients or some of the other neurodevelopmental conditions associated with WDFY3 mutation.
Our genetic approach revealed several cell autonomous requirements of WDFY3 in neuronal development that could underlie the pathogenic mechanisms of WDFY3-related neurodevelopmental conditions. The results are also consistent with findings in other ASD animal models and patients and suggest an important role for WDFY3 in regulating neuronal function and interconnectivity in postnatal life. |
doi_str_mv | 10.1186/s13229-022-00508-3 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ec1c5232e330468f88b203349b7c5260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A708045546</galeid><doaj_id>oai_doaj_org_article_ec1c5232e330468f88b203349b7c5260</doaj_id><sourcerecordid>A708045546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-44baef324a592a8806861ee8f4d18e832c2160be9a91d1a0a5dd68e1b85b59473</originalsourceid><addsrcrecordid>eNptUtFqHCEUHUpLE9L8QB_KQKH0ZVK96qzzUghpky4E-tJS-iSOc2fXxdGtzgTy93V3NmG3VB-U4znH6_UUxVtKriiV9adEGUBTEYCKEEFkxV4U50A4qYA18PJof1ZcprQheTDKOYfXxRkTC8ao5OfF8teX29-sHKZRjzb4UrsRYyqdHqzXsdyGZGfcd-UQ4nYdXFg9lqEvTYijNdqVHqcYfHpTvOq1S3h5WC-Kn7dff9x8q-6_3y1vru8rIxo-Vpy3GnsGXIsGtJSkljVFlD3vqETJwACtSYuNbmhHNdGi62qJtJWizQYLdlEsZ98u6I3aRjvo-KiCtmoPhLhSeleZQ4WGGgEMkDHCa9lL2QJhjDftIuM1yV6fZ6_t1A7YGfRj1O7E9PTE27VahQfVAG1gX8zHg0EMfyZMoxpsMuic9himpKCWBJjgwDP1_T_UTZiiz63KrIbCgoi94YG10vkB1vch32t2pup6QSThQvA6s67-w8qzw8Ga4LG3GT8RfDgSrDF_8zoFN-3-Np0SYSaaGFKK2D83gxK1C56ag6dy8NQ-eIpl0bvjNj5LnmLG_gL8i8-F</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691270547</pqid></control><display><type>article</type><title>WDFY3 mutation alters laminar position and morphology of cortical neurons</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Schaaf, Zachary A ; Tat, Lyvin ; Cannizzaro, Noemi ; Panoutsopoulos, Alexios A ; Green, Ralph ; Rülicke, Thomas ; Hippenmeyer, Simon ; Zarbalis, Konstantinos S</creator><creatorcontrib>Schaaf, Zachary A ; Tat, Lyvin ; Cannizzaro, Noemi ; Panoutsopoulos, Alexios A ; Green, Ralph ; Rülicke, Thomas ; Hippenmeyer, Simon ; Zarbalis, Konstantinos S</creatorcontrib><description>Proper cerebral cortical development depends on the tightly orchestrated migration of newly born neurons from the inner ventricular and subventricular zones to the outer cortical plate. Any disturbance in this process during prenatal stages may lead to neuronal migration disorders (NMDs), which can vary in extent from focal to global. Furthermore, NMDs show a substantial comorbidity with other neurodevelopmental disorders, notably autism spectrum disorders (ASDs). Our previous work demonstrated focal neuronal migration defects in mice carrying loss-of-function alleles of the recognized autism risk gene WDFY3. However, the cellular origins of these defects in Wdfy3 mutant mice remain elusive and uncovering it will provide critical insight into WDFY3-dependent disease pathology.
Here, in an effort to untangle the origins of NMDs in Wdfy3
mice, we employed mosaic analysis with double markers (MADM). MADM technology enabled us to genetically distinctly track and phenotypically analyze mutant and wild-type cells concomitantly in vivo using immunofluorescent techniques.
We revealed a cell autonomous requirement of WDFY3 for accurate laminar positioning of cortical projection neurons and elimination of mispositioned cells during early postnatal life. In addition, we identified significant deviations in dendritic arborization, as well as synaptic density and morphology between wild type, heterozygous, and homozygous Wdfy3 mutant neurons in Wdfy3-MADM reporter mice at postnatal stages.
While Wdfy3 mutant mice have provided valuable insight into prenatal aspects of ASD pathology that remain inaccessible to investigation in humans, like most animal models, they do not a perfectly replicate all aspects of human ASD biology. The lack of human data makes it indeterminate whether morphological deviations described here apply to ASD patients or some of the other neurodevelopmental conditions associated with WDFY3 mutation.
Our genetic approach revealed several cell autonomous requirements of WDFY3 in neuronal development that could underlie the pathogenic mechanisms of WDFY3-related neurodevelopmental conditions. The results are also consistent with findings in other ASD animal models and patients and suggest an important role for WDFY3 in regulating neuronal function and interconnectivity in postnatal life.</description><identifier>ISSN: 2040-2392</identifier><identifier>EISSN: 2040-2392</identifier><identifier>DOI: 10.1186/s13229-022-00508-3</identifier><identifier>PMID: 35733184</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Accreditation ; Adaptor Proteins, Signal Transducing - genetics ; Animals ; Antibodies ; Antigens ; Autism ; Autistic Disorder - genetics ; Autophagy-Related Proteins - genetics ; Brain ; Cerebral cortex ; Cerebral Cortex - cytology ; Comorbidity ; Dendrites ; Dendritic spines ; Excitatory neurons ; Genetic aspects ; Health aspects ; Humans ; Laboratory animals ; Mice ; Microscopy ; Morphology ; Mutation ; Neurodevelopmental disorders ; Neurogenesis ; Neurogenesis - genetics ; Neuronal migration ; Neurons - cytology ; Neurophysiology ; Pediatric research ; Pregnant women ; Proteins ; Risk factors ; WDFY3</subject><ispartof>Molecular autism, 2022-06, Vol.13 (1), p.27-12, Article 27</ispartof><rights>2022. The Author(s).</rights><rights>COPYRIGHT 2022 BioMed Central Ltd.</rights><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-44baef324a592a8806861ee8f4d18e832c2160be9a91d1a0a5dd68e1b85b59473</citedby><cites>FETCH-LOGICAL-c594t-44baef324a592a8806861ee8f4d18e832c2160be9a91d1a0a5dd68e1b85b59473</cites><orcidid>0000-0003-2279-1061 ; 0000-0003-0681-2707 ; 0000-0002-9935-230X ; 0000-0002-2121-9496 ; 0000-0001-6930-1256 ; 0000-0003-4968-4119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219247/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2691270547?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35733184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schaaf, Zachary A</creatorcontrib><creatorcontrib>Tat, Lyvin</creatorcontrib><creatorcontrib>Cannizzaro, Noemi</creatorcontrib><creatorcontrib>Panoutsopoulos, Alexios A</creatorcontrib><creatorcontrib>Green, Ralph</creatorcontrib><creatorcontrib>Rülicke, Thomas</creatorcontrib><creatorcontrib>Hippenmeyer, Simon</creatorcontrib><creatorcontrib>Zarbalis, Konstantinos S</creatorcontrib><title>WDFY3 mutation alters laminar position and morphology of cortical neurons</title><title>Molecular autism</title><addtitle>Mol Autism</addtitle><description>Proper cerebral cortical development depends on the tightly orchestrated migration of newly born neurons from the inner ventricular and subventricular zones to the outer cortical plate. Any disturbance in this process during prenatal stages may lead to neuronal migration disorders (NMDs), which can vary in extent from focal to global. Furthermore, NMDs show a substantial comorbidity with other neurodevelopmental disorders, notably autism spectrum disorders (ASDs). Our previous work demonstrated focal neuronal migration defects in mice carrying loss-of-function alleles of the recognized autism risk gene WDFY3. However, the cellular origins of these defects in Wdfy3 mutant mice remain elusive and uncovering it will provide critical insight into WDFY3-dependent disease pathology.
Here, in an effort to untangle the origins of NMDs in Wdfy3
mice, we employed mosaic analysis with double markers (MADM). MADM technology enabled us to genetically distinctly track and phenotypically analyze mutant and wild-type cells concomitantly in vivo using immunofluorescent techniques.
We revealed a cell autonomous requirement of WDFY3 for accurate laminar positioning of cortical projection neurons and elimination of mispositioned cells during early postnatal life. In addition, we identified significant deviations in dendritic arborization, as well as synaptic density and morphology between wild type, heterozygous, and homozygous Wdfy3 mutant neurons in Wdfy3-MADM reporter mice at postnatal stages.
While Wdfy3 mutant mice have provided valuable insight into prenatal aspects of ASD pathology that remain inaccessible to investigation in humans, like most animal models, they do not a perfectly replicate all aspects of human ASD biology. The lack of human data makes it indeterminate whether morphological deviations described here apply to ASD patients or some of the other neurodevelopmental conditions associated with WDFY3 mutation.
Our genetic approach revealed several cell autonomous requirements of WDFY3 in neuronal development that could underlie the pathogenic mechanisms of WDFY3-related neurodevelopmental conditions. The results are also consistent with findings in other ASD animal models and patients and suggest an important role for WDFY3 in regulating neuronal function and interconnectivity in postnatal life.</description><subject>Accreditation</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antigens</subject><subject>Autism</subject><subject>Autistic Disorder - genetics</subject><subject>Autophagy-Related Proteins - genetics</subject><subject>Brain</subject><subject>Cerebral cortex</subject><subject>Cerebral Cortex - cytology</subject><subject>Comorbidity</subject><subject>Dendrites</subject><subject>Dendritic spines</subject><subject>Excitatory neurons</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Laboratory animals</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Mutation</subject><subject>Neurodevelopmental disorders</subject><subject>Neurogenesis</subject><subject>Neurogenesis - genetics</subject><subject>Neuronal migration</subject><subject>Neurons - cytology</subject><subject>Neurophysiology</subject><subject>Pediatric research</subject><subject>Pregnant women</subject><subject>Proteins</subject><subject>Risk factors</subject><subject>WDFY3</subject><issn>2040-2392</issn><issn>2040-2392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUtFqHCEUHUpLE9L8QB_KQKH0ZVK96qzzUghpky4E-tJS-iSOc2fXxdGtzgTy93V3NmG3VB-U4znH6_UUxVtKriiV9adEGUBTEYCKEEFkxV4U50A4qYA18PJof1ZcprQheTDKOYfXxRkTC8ao5OfF8teX29-sHKZRjzb4UrsRYyqdHqzXsdyGZGfcd-UQ4nYdXFg9lqEvTYijNdqVHqcYfHpTvOq1S3h5WC-Kn7dff9x8q-6_3y1vru8rIxo-Vpy3GnsGXIsGtJSkljVFlD3vqETJwACtSYuNbmhHNdGi62qJtJWizQYLdlEsZ98u6I3aRjvo-KiCtmoPhLhSeleZQ4WGGgEMkDHCa9lL2QJhjDftIuM1yV6fZ6_t1A7YGfRj1O7E9PTE27VahQfVAG1gX8zHg0EMfyZMoxpsMuic9himpKCWBJjgwDP1_T_UTZiiz63KrIbCgoi94YG10vkB1vch32t2pup6QSThQvA6s67-w8qzw8Ga4LG3GT8RfDgSrDF_8zoFN-3-Np0SYSaaGFKK2D83gxK1C56ag6dy8NQ-eIpl0bvjNj5LnmLG_gL8i8-F</recordid><startdate>20220622</startdate><enddate>20220622</enddate><creator>Schaaf, Zachary A</creator><creator>Tat, Lyvin</creator><creator>Cannizzaro, Noemi</creator><creator>Panoutsopoulos, Alexios A</creator><creator>Green, Ralph</creator><creator>Rülicke, Thomas</creator><creator>Hippenmeyer, Simon</creator><creator>Zarbalis, Konstantinos S</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2279-1061</orcidid><orcidid>https://orcid.org/0000-0003-0681-2707</orcidid><orcidid>https://orcid.org/0000-0002-9935-230X</orcidid><orcidid>https://orcid.org/0000-0002-2121-9496</orcidid><orcidid>https://orcid.org/0000-0001-6930-1256</orcidid><orcidid>https://orcid.org/0000-0003-4968-4119</orcidid></search><sort><creationdate>20220622</creationdate><title>WDFY3 mutation alters laminar position and morphology of cortical neurons</title><author>Schaaf, Zachary A ; Tat, Lyvin ; Cannizzaro, Noemi ; Panoutsopoulos, Alexios A ; Green, Ralph ; Rülicke, Thomas ; Hippenmeyer, Simon ; Zarbalis, Konstantinos S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-44baef324a592a8806861ee8f4d18e832c2160be9a91d1a0a5dd68e1b85b59473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accreditation</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antigens</topic><topic>Autism</topic><topic>Autistic Disorder - genetics</topic><topic>Autophagy-Related Proteins - genetics</topic><topic>Brain</topic><topic>Cerebral cortex</topic><topic>Cerebral Cortex - cytology</topic><topic>Comorbidity</topic><topic>Dendrites</topic><topic>Dendritic spines</topic><topic>Excitatory neurons</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Laboratory animals</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Mutation</topic><topic>Neurodevelopmental disorders</topic><topic>Neurogenesis</topic><topic>Neurogenesis - genetics</topic><topic>Neuronal migration</topic><topic>Neurons - cytology</topic><topic>Neurophysiology</topic><topic>Pediatric research</topic><topic>Pregnant women</topic><topic>Proteins</topic><topic>Risk factors</topic><topic>WDFY3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaaf, Zachary A</creatorcontrib><creatorcontrib>Tat, Lyvin</creatorcontrib><creatorcontrib>Cannizzaro, Noemi</creatorcontrib><creatorcontrib>Panoutsopoulos, Alexios A</creatorcontrib><creatorcontrib>Green, Ralph</creatorcontrib><creatorcontrib>Rülicke, Thomas</creatorcontrib><creatorcontrib>Hippenmeyer, Simon</creatorcontrib><creatorcontrib>Zarbalis, Konstantinos S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Molecular autism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaaf, Zachary A</au><au>Tat, Lyvin</au><au>Cannizzaro, Noemi</au><au>Panoutsopoulos, Alexios A</au><au>Green, Ralph</au><au>Rülicke, Thomas</au><au>Hippenmeyer, Simon</au><au>Zarbalis, Konstantinos S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WDFY3 mutation alters laminar position and morphology of cortical neurons</atitle><jtitle>Molecular autism</jtitle><addtitle>Mol Autism</addtitle><date>2022-06-22</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>27</spage><epage>12</epage><pages>27-12</pages><artnum>27</artnum><issn>2040-2392</issn><eissn>2040-2392</eissn><abstract>Proper cerebral cortical development depends on the tightly orchestrated migration of newly born neurons from the inner ventricular and subventricular zones to the outer cortical plate. Any disturbance in this process during prenatal stages may lead to neuronal migration disorders (NMDs), which can vary in extent from focal to global. Furthermore, NMDs show a substantial comorbidity with other neurodevelopmental disorders, notably autism spectrum disorders (ASDs). Our previous work demonstrated focal neuronal migration defects in mice carrying loss-of-function alleles of the recognized autism risk gene WDFY3. However, the cellular origins of these defects in Wdfy3 mutant mice remain elusive and uncovering it will provide critical insight into WDFY3-dependent disease pathology.
Here, in an effort to untangle the origins of NMDs in Wdfy3
mice, we employed mosaic analysis with double markers (MADM). MADM technology enabled us to genetically distinctly track and phenotypically analyze mutant and wild-type cells concomitantly in vivo using immunofluorescent techniques.
We revealed a cell autonomous requirement of WDFY3 for accurate laminar positioning of cortical projection neurons and elimination of mispositioned cells during early postnatal life. In addition, we identified significant deviations in dendritic arborization, as well as synaptic density and morphology between wild type, heterozygous, and homozygous Wdfy3 mutant neurons in Wdfy3-MADM reporter mice at postnatal stages.
While Wdfy3 mutant mice have provided valuable insight into prenatal aspects of ASD pathology that remain inaccessible to investigation in humans, like most animal models, they do not a perfectly replicate all aspects of human ASD biology. The lack of human data makes it indeterminate whether morphological deviations described here apply to ASD patients or some of the other neurodevelopmental conditions associated with WDFY3 mutation.
Our genetic approach revealed several cell autonomous requirements of WDFY3 in neuronal development that could underlie the pathogenic mechanisms of WDFY3-related neurodevelopmental conditions. The results are also consistent with findings in other ASD animal models and patients and suggest an important role for WDFY3 in regulating neuronal function and interconnectivity in postnatal life.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>35733184</pmid><doi>10.1186/s13229-022-00508-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2279-1061</orcidid><orcidid>https://orcid.org/0000-0003-0681-2707</orcidid><orcidid>https://orcid.org/0000-0002-9935-230X</orcidid><orcidid>https://orcid.org/0000-0002-2121-9496</orcidid><orcidid>https://orcid.org/0000-0001-6930-1256</orcidid><orcidid>https://orcid.org/0000-0003-4968-4119</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-2392 |
ispartof | Molecular autism, 2022-06, Vol.13 (1), p.27-12, Article 27 |
issn | 2040-2392 2040-2392 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ec1c5232e330468f88b203349b7c5260 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Accreditation Adaptor Proteins, Signal Transducing - genetics Animals Antibodies Antigens Autism Autistic Disorder - genetics Autophagy-Related Proteins - genetics Brain Cerebral cortex Cerebral Cortex - cytology Comorbidity Dendrites Dendritic spines Excitatory neurons Genetic aspects Health aspects Humans Laboratory animals Mice Microscopy Morphology Mutation Neurodevelopmental disorders Neurogenesis Neurogenesis - genetics Neuronal migration Neurons - cytology Neurophysiology Pediatric research Pregnant women Proteins Risk factors WDFY3 |
title | WDFY3 mutation alters laminar position and morphology of cortical neurons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WDFY3%20mutation%20alters%20laminar%20position%20and%20morphology%20of%20cortical%20neurons&rft.jtitle=Molecular%20autism&rft.au=Schaaf,%20Zachary%20A&rft.date=2022-06-22&rft.volume=13&rft.issue=1&rft.spage=27&rft.epage=12&rft.pages=27-12&rft.artnum=27&rft.issn=2040-2392&rft.eissn=2040-2392&rft_id=info:doi/10.1186/s13229-022-00508-3&rft_dat=%3Cgale_doaj_%3EA708045546%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-44baef324a592a8806861ee8f4d18e832c2160be9a91d1a0a5dd68e1b85b59473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2691270547&rft_id=info:pmid/35733184&rft_galeid=A708045546&rfr_iscdi=true |