Loading…

WDFY3 mutation alters laminar position and morphology of cortical neurons

Proper cerebral cortical development depends on the tightly orchestrated migration of newly born neurons from the inner ventricular and subventricular zones to the outer cortical plate. Any disturbance in this process during prenatal stages may lead to neuronal migration disorders (NMDs), which can...

Full description

Saved in:
Bibliographic Details
Published in:Molecular autism 2022-06, Vol.13 (1), p.27-12, Article 27
Main Authors: Schaaf, Zachary A, Tat, Lyvin, Cannizzaro, Noemi, Panoutsopoulos, Alexios A, Green, Ralph, Rülicke, Thomas, Hippenmeyer, Simon, Zarbalis, Konstantinos S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c594t-44baef324a592a8806861ee8f4d18e832c2160be9a91d1a0a5dd68e1b85b59473
cites cdi_FETCH-LOGICAL-c594t-44baef324a592a8806861ee8f4d18e832c2160be9a91d1a0a5dd68e1b85b59473
container_end_page 12
container_issue 1
container_start_page 27
container_title Molecular autism
container_volume 13
creator Schaaf, Zachary A
Tat, Lyvin
Cannizzaro, Noemi
Panoutsopoulos, Alexios A
Green, Ralph
Rülicke, Thomas
Hippenmeyer, Simon
Zarbalis, Konstantinos S
description Proper cerebral cortical development depends on the tightly orchestrated migration of newly born neurons from the inner ventricular and subventricular zones to the outer cortical plate. Any disturbance in this process during prenatal stages may lead to neuronal migration disorders (NMDs), which can vary in extent from focal to global. Furthermore, NMDs show a substantial comorbidity with other neurodevelopmental disorders, notably autism spectrum disorders (ASDs). Our previous work demonstrated focal neuronal migration defects in mice carrying loss-of-function alleles of the recognized autism risk gene WDFY3. However, the cellular origins of these defects in Wdfy3 mutant mice remain elusive and uncovering it will provide critical insight into WDFY3-dependent disease pathology. Here, in an effort to untangle the origins of NMDs in Wdfy3 mice, we employed mosaic analysis with double markers (MADM). MADM technology enabled us to genetically distinctly track and phenotypically analyze mutant and wild-type cells concomitantly in vivo using immunofluorescent techniques. We revealed a cell autonomous requirement of WDFY3 for accurate laminar positioning of cortical projection neurons and elimination of mispositioned cells during early postnatal life. In addition, we identified significant deviations in dendritic arborization, as well as synaptic density and morphology between wild type, heterozygous, and homozygous Wdfy3 mutant neurons in Wdfy3-MADM reporter mice at postnatal stages. While Wdfy3 mutant mice have provided valuable insight into prenatal aspects of ASD pathology that remain inaccessible to investigation in humans, like most animal models, they do not a perfectly replicate all aspects of human ASD biology. The lack of human data makes it indeterminate whether morphological deviations described here apply to ASD patients or some of the other neurodevelopmental conditions associated with WDFY3 mutation. Our genetic approach revealed several cell autonomous requirements of WDFY3 in neuronal development that could underlie the pathogenic mechanisms of WDFY3-related neurodevelopmental conditions. The results are also consistent with findings in other ASD animal models and patients and suggest an important role for WDFY3 in regulating neuronal function and interconnectivity in postnatal life.
doi_str_mv 10.1186/s13229-022-00508-3
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ec1c5232e330468f88b203349b7c5260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A708045546</galeid><doaj_id>oai_doaj_org_article_ec1c5232e330468f88b203349b7c5260</doaj_id><sourcerecordid>A708045546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-44baef324a592a8806861ee8f4d18e832c2160be9a91d1a0a5dd68e1b85b59473</originalsourceid><addsrcrecordid>eNptUtFqHCEUHUpLE9L8QB_KQKH0ZVK96qzzUghpky4E-tJS-iSOc2fXxdGtzgTy93V3NmG3VB-U4znH6_UUxVtKriiV9adEGUBTEYCKEEFkxV4U50A4qYA18PJof1ZcprQheTDKOYfXxRkTC8ao5OfF8teX29-sHKZRjzb4UrsRYyqdHqzXsdyGZGfcd-UQ4nYdXFg9lqEvTYijNdqVHqcYfHpTvOq1S3h5WC-Kn7dff9x8q-6_3y1vru8rIxo-Vpy3GnsGXIsGtJSkljVFlD3vqETJwACtSYuNbmhHNdGi62qJtJWizQYLdlEsZ98u6I3aRjvo-KiCtmoPhLhSeleZQ4WGGgEMkDHCa9lL2QJhjDftIuM1yV6fZ6_t1A7YGfRj1O7E9PTE27VahQfVAG1gX8zHg0EMfyZMoxpsMuic9himpKCWBJjgwDP1_T_UTZiiz63KrIbCgoi94YG10vkB1vch32t2pup6QSThQvA6s67-w8qzw8Ga4LG3GT8RfDgSrDF_8zoFN-3-Np0SYSaaGFKK2D83gxK1C56ag6dy8NQ-eIpl0bvjNj5LnmLG_gL8i8-F</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691270547</pqid></control><display><type>article</type><title>WDFY3 mutation alters laminar position and morphology of cortical neurons</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Schaaf, Zachary A ; Tat, Lyvin ; Cannizzaro, Noemi ; Panoutsopoulos, Alexios A ; Green, Ralph ; Rülicke, Thomas ; Hippenmeyer, Simon ; Zarbalis, Konstantinos S</creator><creatorcontrib>Schaaf, Zachary A ; Tat, Lyvin ; Cannizzaro, Noemi ; Panoutsopoulos, Alexios A ; Green, Ralph ; Rülicke, Thomas ; Hippenmeyer, Simon ; Zarbalis, Konstantinos S</creatorcontrib><description>Proper cerebral cortical development depends on the tightly orchestrated migration of newly born neurons from the inner ventricular and subventricular zones to the outer cortical plate. Any disturbance in this process during prenatal stages may lead to neuronal migration disorders (NMDs), which can vary in extent from focal to global. Furthermore, NMDs show a substantial comorbidity with other neurodevelopmental disorders, notably autism spectrum disorders (ASDs). Our previous work demonstrated focal neuronal migration defects in mice carrying loss-of-function alleles of the recognized autism risk gene WDFY3. However, the cellular origins of these defects in Wdfy3 mutant mice remain elusive and uncovering it will provide critical insight into WDFY3-dependent disease pathology. Here, in an effort to untangle the origins of NMDs in Wdfy3 mice, we employed mosaic analysis with double markers (MADM). MADM technology enabled us to genetically distinctly track and phenotypically analyze mutant and wild-type cells concomitantly in vivo using immunofluorescent techniques. We revealed a cell autonomous requirement of WDFY3 for accurate laminar positioning of cortical projection neurons and elimination of mispositioned cells during early postnatal life. In addition, we identified significant deviations in dendritic arborization, as well as synaptic density and morphology between wild type, heterozygous, and homozygous Wdfy3 mutant neurons in Wdfy3-MADM reporter mice at postnatal stages. While Wdfy3 mutant mice have provided valuable insight into prenatal aspects of ASD pathology that remain inaccessible to investigation in humans, like most animal models, they do not a perfectly replicate all aspects of human ASD biology. The lack of human data makes it indeterminate whether morphological deviations described here apply to ASD patients or some of the other neurodevelopmental conditions associated with WDFY3 mutation. Our genetic approach revealed several cell autonomous requirements of WDFY3 in neuronal development that could underlie the pathogenic mechanisms of WDFY3-related neurodevelopmental conditions. The results are also consistent with findings in other ASD animal models and patients and suggest an important role for WDFY3 in regulating neuronal function and interconnectivity in postnatal life.</description><identifier>ISSN: 2040-2392</identifier><identifier>EISSN: 2040-2392</identifier><identifier>DOI: 10.1186/s13229-022-00508-3</identifier><identifier>PMID: 35733184</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Accreditation ; Adaptor Proteins, Signal Transducing - genetics ; Animals ; Antibodies ; Antigens ; Autism ; Autistic Disorder - genetics ; Autophagy-Related Proteins - genetics ; Brain ; Cerebral cortex ; Cerebral Cortex - cytology ; Comorbidity ; Dendrites ; Dendritic spines ; Excitatory neurons ; Genetic aspects ; Health aspects ; Humans ; Laboratory animals ; Mice ; Microscopy ; Morphology ; Mutation ; Neurodevelopmental disorders ; Neurogenesis ; Neurogenesis - genetics ; Neuronal migration ; Neurons - cytology ; Neurophysiology ; Pediatric research ; Pregnant women ; Proteins ; Risk factors ; WDFY3</subject><ispartof>Molecular autism, 2022-06, Vol.13 (1), p.27-12, Article 27</ispartof><rights>2022. The Author(s).</rights><rights>COPYRIGHT 2022 BioMed Central Ltd.</rights><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-44baef324a592a8806861ee8f4d18e832c2160be9a91d1a0a5dd68e1b85b59473</citedby><cites>FETCH-LOGICAL-c594t-44baef324a592a8806861ee8f4d18e832c2160be9a91d1a0a5dd68e1b85b59473</cites><orcidid>0000-0003-2279-1061 ; 0000-0003-0681-2707 ; 0000-0002-9935-230X ; 0000-0002-2121-9496 ; 0000-0001-6930-1256 ; 0000-0003-4968-4119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219247/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2691270547?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35733184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schaaf, Zachary A</creatorcontrib><creatorcontrib>Tat, Lyvin</creatorcontrib><creatorcontrib>Cannizzaro, Noemi</creatorcontrib><creatorcontrib>Panoutsopoulos, Alexios A</creatorcontrib><creatorcontrib>Green, Ralph</creatorcontrib><creatorcontrib>Rülicke, Thomas</creatorcontrib><creatorcontrib>Hippenmeyer, Simon</creatorcontrib><creatorcontrib>Zarbalis, Konstantinos S</creatorcontrib><title>WDFY3 mutation alters laminar position and morphology of cortical neurons</title><title>Molecular autism</title><addtitle>Mol Autism</addtitle><description>Proper cerebral cortical development depends on the tightly orchestrated migration of newly born neurons from the inner ventricular and subventricular zones to the outer cortical plate. Any disturbance in this process during prenatal stages may lead to neuronal migration disorders (NMDs), which can vary in extent from focal to global. Furthermore, NMDs show a substantial comorbidity with other neurodevelopmental disorders, notably autism spectrum disorders (ASDs). Our previous work demonstrated focal neuronal migration defects in mice carrying loss-of-function alleles of the recognized autism risk gene WDFY3. However, the cellular origins of these defects in Wdfy3 mutant mice remain elusive and uncovering it will provide critical insight into WDFY3-dependent disease pathology. Here, in an effort to untangle the origins of NMDs in Wdfy3 mice, we employed mosaic analysis with double markers (MADM). MADM technology enabled us to genetically distinctly track and phenotypically analyze mutant and wild-type cells concomitantly in vivo using immunofluorescent techniques. We revealed a cell autonomous requirement of WDFY3 for accurate laminar positioning of cortical projection neurons and elimination of mispositioned cells during early postnatal life. In addition, we identified significant deviations in dendritic arborization, as well as synaptic density and morphology between wild type, heterozygous, and homozygous Wdfy3 mutant neurons in Wdfy3-MADM reporter mice at postnatal stages. While Wdfy3 mutant mice have provided valuable insight into prenatal aspects of ASD pathology that remain inaccessible to investigation in humans, like most animal models, they do not a perfectly replicate all aspects of human ASD biology. The lack of human data makes it indeterminate whether morphological deviations described here apply to ASD patients or some of the other neurodevelopmental conditions associated with WDFY3 mutation. Our genetic approach revealed several cell autonomous requirements of WDFY3 in neuronal development that could underlie the pathogenic mechanisms of WDFY3-related neurodevelopmental conditions. The results are also consistent with findings in other ASD animal models and patients and suggest an important role for WDFY3 in regulating neuronal function and interconnectivity in postnatal life.</description><subject>Accreditation</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antigens</subject><subject>Autism</subject><subject>Autistic Disorder - genetics</subject><subject>Autophagy-Related Proteins - genetics</subject><subject>Brain</subject><subject>Cerebral cortex</subject><subject>Cerebral Cortex - cytology</subject><subject>Comorbidity</subject><subject>Dendrites</subject><subject>Dendritic spines</subject><subject>Excitatory neurons</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Laboratory animals</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Mutation</subject><subject>Neurodevelopmental disorders</subject><subject>Neurogenesis</subject><subject>Neurogenesis - genetics</subject><subject>Neuronal migration</subject><subject>Neurons - cytology</subject><subject>Neurophysiology</subject><subject>Pediatric research</subject><subject>Pregnant women</subject><subject>Proteins</subject><subject>Risk factors</subject><subject>WDFY3</subject><issn>2040-2392</issn><issn>2040-2392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUtFqHCEUHUpLE9L8QB_KQKH0ZVK96qzzUghpky4E-tJS-iSOc2fXxdGtzgTy93V3NmG3VB-U4znH6_UUxVtKriiV9adEGUBTEYCKEEFkxV4U50A4qYA18PJof1ZcprQheTDKOYfXxRkTC8ao5OfF8teX29-sHKZRjzb4UrsRYyqdHqzXsdyGZGfcd-UQ4nYdXFg9lqEvTYijNdqVHqcYfHpTvOq1S3h5WC-Kn7dff9x8q-6_3y1vru8rIxo-Vpy3GnsGXIsGtJSkljVFlD3vqETJwACtSYuNbmhHNdGi62qJtJWizQYLdlEsZ98u6I3aRjvo-KiCtmoPhLhSeleZQ4WGGgEMkDHCa9lL2QJhjDftIuM1yV6fZ6_t1A7YGfRj1O7E9PTE27VahQfVAG1gX8zHg0EMfyZMoxpsMuic9himpKCWBJjgwDP1_T_UTZiiz63KrIbCgoi94YG10vkB1vch32t2pup6QSThQvA6s67-w8qzw8Ga4LG3GT8RfDgSrDF_8zoFN-3-Np0SYSaaGFKK2D83gxK1C56ag6dy8NQ-eIpl0bvjNj5LnmLG_gL8i8-F</recordid><startdate>20220622</startdate><enddate>20220622</enddate><creator>Schaaf, Zachary A</creator><creator>Tat, Lyvin</creator><creator>Cannizzaro, Noemi</creator><creator>Panoutsopoulos, Alexios A</creator><creator>Green, Ralph</creator><creator>Rülicke, Thomas</creator><creator>Hippenmeyer, Simon</creator><creator>Zarbalis, Konstantinos S</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2279-1061</orcidid><orcidid>https://orcid.org/0000-0003-0681-2707</orcidid><orcidid>https://orcid.org/0000-0002-9935-230X</orcidid><orcidid>https://orcid.org/0000-0002-2121-9496</orcidid><orcidid>https://orcid.org/0000-0001-6930-1256</orcidid><orcidid>https://orcid.org/0000-0003-4968-4119</orcidid></search><sort><creationdate>20220622</creationdate><title>WDFY3 mutation alters laminar position and morphology of cortical neurons</title><author>Schaaf, Zachary A ; Tat, Lyvin ; Cannizzaro, Noemi ; Panoutsopoulos, Alexios A ; Green, Ralph ; Rülicke, Thomas ; Hippenmeyer, Simon ; Zarbalis, Konstantinos S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-44baef324a592a8806861ee8f4d18e832c2160be9a91d1a0a5dd68e1b85b59473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accreditation</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antigens</topic><topic>Autism</topic><topic>Autistic Disorder - genetics</topic><topic>Autophagy-Related Proteins - genetics</topic><topic>Brain</topic><topic>Cerebral cortex</topic><topic>Cerebral Cortex - cytology</topic><topic>Comorbidity</topic><topic>Dendrites</topic><topic>Dendritic spines</topic><topic>Excitatory neurons</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Laboratory animals</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Mutation</topic><topic>Neurodevelopmental disorders</topic><topic>Neurogenesis</topic><topic>Neurogenesis - genetics</topic><topic>Neuronal migration</topic><topic>Neurons - cytology</topic><topic>Neurophysiology</topic><topic>Pediatric research</topic><topic>Pregnant women</topic><topic>Proteins</topic><topic>Risk factors</topic><topic>WDFY3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaaf, Zachary A</creatorcontrib><creatorcontrib>Tat, Lyvin</creatorcontrib><creatorcontrib>Cannizzaro, Noemi</creatorcontrib><creatorcontrib>Panoutsopoulos, Alexios A</creatorcontrib><creatorcontrib>Green, Ralph</creatorcontrib><creatorcontrib>Rülicke, Thomas</creatorcontrib><creatorcontrib>Hippenmeyer, Simon</creatorcontrib><creatorcontrib>Zarbalis, Konstantinos S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Molecular autism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaaf, Zachary A</au><au>Tat, Lyvin</au><au>Cannizzaro, Noemi</au><au>Panoutsopoulos, Alexios A</au><au>Green, Ralph</au><au>Rülicke, Thomas</au><au>Hippenmeyer, Simon</au><au>Zarbalis, Konstantinos S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WDFY3 mutation alters laminar position and morphology of cortical neurons</atitle><jtitle>Molecular autism</jtitle><addtitle>Mol Autism</addtitle><date>2022-06-22</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>27</spage><epage>12</epage><pages>27-12</pages><artnum>27</artnum><issn>2040-2392</issn><eissn>2040-2392</eissn><abstract>Proper cerebral cortical development depends on the tightly orchestrated migration of newly born neurons from the inner ventricular and subventricular zones to the outer cortical plate. Any disturbance in this process during prenatal stages may lead to neuronal migration disorders (NMDs), which can vary in extent from focal to global. Furthermore, NMDs show a substantial comorbidity with other neurodevelopmental disorders, notably autism spectrum disorders (ASDs). Our previous work demonstrated focal neuronal migration defects in mice carrying loss-of-function alleles of the recognized autism risk gene WDFY3. However, the cellular origins of these defects in Wdfy3 mutant mice remain elusive and uncovering it will provide critical insight into WDFY3-dependent disease pathology. Here, in an effort to untangle the origins of NMDs in Wdfy3 mice, we employed mosaic analysis with double markers (MADM). MADM technology enabled us to genetically distinctly track and phenotypically analyze mutant and wild-type cells concomitantly in vivo using immunofluorescent techniques. We revealed a cell autonomous requirement of WDFY3 for accurate laminar positioning of cortical projection neurons and elimination of mispositioned cells during early postnatal life. In addition, we identified significant deviations in dendritic arborization, as well as synaptic density and morphology between wild type, heterozygous, and homozygous Wdfy3 mutant neurons in Wdfy3-MADM reporter mice at postnatal stages. While Wdfy3 mutant mice have provided valuable insight into prenatal aspects of ASD pathology that remain inaccessible to investigation in humans, like most animal models, they do not a perfectly replicate all aspects of human ASD biology. The lack of human data makes it indeterminate whether morphological deviations described here apply to ASD patients or some of the other neurodevelopmental conditions associated with WDFY3 mutation. Our genetic approach revealed several cell autonomous requirements of WDFY3 in neuronal development that could underlie the pathogenic mechanisms of WDFY3-related neurodevelopmental conditions. The results are also consistent with findings in other ASD animal models and patients and suggest an important role for WDFY3 in regulating neuronal function and interconnectivity in postnatal life.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>35733184</pmid><doi>10.1186/s13229-022-00508-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2279-1061</orcidid><orcidid>https://orcid.org/0000-0003-0681-2707</orcidid><orcidid>https://orcid.org/0000-0002-9935-230X</orcidid><orcidid>https://orcid.org/0000-0002-2121-9496</orcidid><orcidid>https://orcid.org/0000-0001-6930-1256</orcidid><orcidid>https://orcid.org/0000-0003-4968-4119</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-2392
ispartof Molecular autism, 2022-06, Vol.13 (1), p.27-12, Article 27
issn 2040-2392
2040-2392
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ec1c5232e330468f88b203349b7c5260
source Open Access: PubMed Central; Publicly Available Content Database
subjects Accreditation
Adaptor Proteins, Signal Transducing - genetics
Animals
Antibodies
Antigens
Autism
Autistic Disorder - genetics
Autophagy-Related Proteins - genetics
Brain
Cerebral cortex
Cerebral Cortex - cytology
Comorbidity
Dendrites
Dendritic spines
Excitatory neurons
Genetic aspects
Health aspects
Humans
Laboratory animals
Mice
Microscopy
Morphology
Mutation
Neurodevelopmental disorders
Neurogenesis
Neurogenesis - genetics
Neuronal migration
Neurons - cytology
Neurophysiology
Pediatric research
Pregnant women
Proteins
Risk factors
WDFY3
title WDFY3 mutation alters laminar position and morphology of cortical neurons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WDFY3%20mutation%20alters%20laminar%20position%20and%20morphology%20of%20cortical%20neurons&rft.jtitle=Molecular%20autism&rft.au=Schaaf,%20Zachary%20A&rft.date=2022-06-22&rft.volume=13&rft.issue=1&rft.spage=27&rft.epage=12&rft.pages=27-12&rft.artnum=27&rft.issn=2040-2392&rft.eissn=2040-2392&rft_id=info:doi/10.1186/s13229-022-00508-3&rft_dat=%3Cgale_doaj_%3EA708045546%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-44baef324a592a8806861ee8f4d18e832c2160be9a91d1a0a5dd68e1b85b59473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2691270547&rft_id=info:pmid/35733184&rft_galeid=A708045546&rfr_iscdi=true