Loading…

Functionalization of Molybdenum Disulfide via Plasma Treatment and 3-Mercaptopropionic Acid for Gas Sensors

Monolayer and multilayer molybdenum disulfide (MoS2) materials are semiconductors with direct/indirect bandgaps of 1.2–1.8 eV and are attractive due to their changes in response to electrical, physicochemical, biological, and mechanical factors. Since the desired electrical properties of MoS2 are kn...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2020-09, Vol.10 (9), p.1860
Main Authors: Seo, Won Seok, Kim, Dae Ki, Han, Ji-Hoon, Park, Kang-Bak, Ryu, Su Chak, Min, Nam Ki, Kim, Joon Hyub
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-8cdf763d5b2b071dec2887fb403177b8140ee7a9ba841d1367c88b25f87394da3
cites cdi_FETCH-LOGICAL-c455t-8cdf763d5b2b071dec2887fb403177b8140ee7a9ba841d1367c88b25f87394da3
container_end_page
container_issue 9
container_start_page 1860
container_title Nanomaterials (Basel, Switzerland)
container_volume 10
creator Seo, Won Seok
Kim, Dae Ki
Han, Ji-Hoon
Park, Kang-Bak
Ryu, Su Chak
Min, Nam Ki
Kim, Joon Hyub
description Monolayer and multilayer molybdenum disulfide (MoS2) materials are semiconductors with direct/indirect bandgaps of 1.2–1.8 eV and are attractive due to their changes in response to electrical, physicochemical, biological, and mechanical factors. Since the desired electrical properties of MoS2 are known, research on its electrical properties has increased, with focus on the deposition and growth of large-area MoS2 and its functionalization. While research on the large-scale production of MoS2 is actively underway, there is a lack of studies on functionalization approaches, which are essential since functional groups can help to dissolve particles or provide adequate reactivity. Strategies for producing films of functionalized MoS2 are rare, and what methods do exist are either complex or inefficient. This work introduces an efficient way to functionalize MoS2. Functional groups are formed on the surface by exposing MoS2 with surface sulfur vacancies generated by plasma treatment to 3-mercaptopropionic acid. This technique can create 1.8 times as many carboxyl groups on the MoS2 surface compared with previously reported strategies. The MoS2-based gas sensor fabricated using the proposed method shows a 2.6 times higher sensitivity and much lower detection limit than the untreated device.
doi_str_mv 10.3390/nano10091860
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ec23e80621e9418dbf58a6ec026a70b8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ec23e80621e9418dbf58a6ec026a70b8</doaj_id><sourcerecordid>2444875872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-8cdf763d5b2b071dec2887fb403177b8140ee7a9ba841d1367c88b25f87394da3</originalsourceid><addsrcrecordid>eNpdkk1LHjEQgBdpUbHe-gMCvfTQbfO5SS4F0WoFRaH2HCYfa_N2N9kmu4L99d23rxTtaYaZh4cZZprmLcEfGdP4U4KUCcaaqA7vNYcUS91yrcmrZ_lBc1zrBuMtxpRg-80Bo1pIQcVh8_N8SW6OOcEQf8M2QblH13l4tD6kZURnsS5DH31ADxHQ7QB1BHRXAsxjSDOC5BFrr0NxMM15KnlaFdGhExc96nNBF1DRt5BqLvVN87qHoYbjp3jUfD__cnf6tb26ubg8PblqHRdibpXzveyYF5ZaLIkPjiole8sxI1JaRTgOQYK2oDjxhHXSKWWp6JVkmntgR83lzuszbMxU4gjl0WSI5m8hl3sDZY5uCGZ1s6BwR0nQnChve6GgCw7TDiS2anV93rmmxY7Bu3XnAsML6ctOij_MfX4wUggtOrkK3j8JSv61hDqbMVYXhgFSyEs1lHOupFCSrui7_9BNXsp6mZXqpKSaY81W6sOOciXXWkL_bxiCzfYpzPOnYH8AV3mpiQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677294093</pqid></control><display><type>article</type><title>Functionalization of Molybdenum Disulfide via Plasma Treatment and 3-Mercaptopropionic Acid for Gas Sensors</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><creator>Seo, Won Seok ; Kim, Dae Ki ; Han, Ji-Hoon ; Park, Kang-Bak ; Ryu, Su Chak ; Min, Nam Ki ; Kim, Joon Hyub</creator><creatorcontrib>Seo, Won Seok ; Kim, Dae Ki ; Han, Ji-Hoon ; Park, Kang-Bak ; Ryu, Su Chak ; Min, Nam Ki ; Kim, Joon Hyub</creatorcontrib><description>Monolayer and multilayer molybdenum disulfide (MoS2) materials are semiconductors with direct/indirect bandgaps of 1.2–1.8 eV and are attractive due to their changes in response to electrical, physicochemical, biological, and mechanical factors. Since the desired electrical properties of MoS2 are known, research on its electrical properties has increased, with focus on the deposition and growth of large-area MoS2 and its functionalization. While research on the large-scale production of MoS2 is actively underway, there is a lack of studies on functionalization approaches, which are essential since functional groups can help to dissolve particles or provide adequate reactivity. Strategies for producing films of functionalized MoS2 are rare, and what methods do exist are either complex or inefficient. This work introduces an efficient way to functionalize MoS2. Functional groups are formed on the surface by exposing MoS2 with surface sulfur vacancies generated by plasma treatment to 3-mercaptopropionic acid. This technique can create 1.8 times as many carboxyl groups on the MoS2 surface compared with previously reported strategies. The MoS2-based gas sensor fabricated using the proposed method shows a 2.6 times higher sensitivity and much lower detection limit than the untreated device.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano10091860</identifier><identifier>PMID: 32957525</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Electrical properties ; Functional groups ; functionalization of 2D materials ; Gas sensors ; Graphene ; Ligands ; Mechanical properties ; Molybdenum ; Molybdenum disulfide ; Multilayers ; Plasma ; Scanning electron microscopy ; Sensors ; Spectrum analysis ; Sulfur</subject><ispartof>Nanomaterials (Basel, Switzerland), 2020-09, Vol.10 (9), p.1860</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-8cdf763d5b2b071dec2887fb403177b8140ee7a9ba841d1367c88b25f87394da3</citedby><cites>FETCH-LOGICAL-c455t-8cdf763d5b2b071dec2887fb403177b8140ee7a9ba841d1367c88b25f87394da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2677294093/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2677294093?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids></links><search><creatorcontrib>Seo, Won Seok</creatorcontrib><creatorcontrib>Kim, Dae Ki</creatorcontrib><creatorcontrib>Han, Ji-Hoon</creatorcontrib><creatorcontrib>Park, Kang-Bak</creatorcontrib><creatorcontrib>Ryu, Su Chak</creatorcontrib><creatorcontrib>Min, Nam Ki</creatorcontrib><creatorcontrib>Kim, Joon Hyub</creatorcontrib><title>Functionalization of Molybdenum Disulfide via Plasma Treatment and 3-Mercaptopropionic Acid for Gas Sensors</title><title>Nanomaterials (Basel, Switzerland)</title><description>Monolayer and multilayer molybdenum disulfide (MoS2) materials are semiconductors with direct/indirect bandgaps of 1.2–1.8 eV and are attractive due to their changes in response to electrical, physicochemical, biological, and mechanical factors. Since the desired electrical properties of MoS2 are known, research on its electrical properties has increased, with focus on the deposition and growth of large-area MoS2 and its functionalization. While research on the large-scale production of MoS2 is actively underway, there is a lack of studies on functionalization approaches, which are essential since functional groups can help to dissolve particles or provide adequate reactivity. Strategies for producing films of functionalized MoS2 are rare, and what methods do exist are either complex or inefficient. This work introduces an efficient way to functionalize MoS2. Functional groups are formed on the surface by exposing MoS2 with surface sulfur vacancies generated by plasma treatment to 3-mercaptopropionic acid. This technique can create 1.8 times as many carboxyl groups on the MoS2 surface compared with previously reported strategies. The MoS2-based gas sensor fabricated using the proposed method shows a 2.6 times higher sensitivity and much lower detection limit than the untreated device.</description><subject>Electrical properties</subject><subject>Functional groups</subject><subject>functionalization of 2D materials</subject><subject>Gas sensors</subject><subject>Graphene</subject><subject>Ligands</subject><subject>Mechanical properties</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>Multilayers</subject><subject>Plasma</subject><subject>Scanning electron microscopy</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>Sulfur</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1LHjEQgBdpUbHe-gMCvfTQbfO5SS4F0WoFRaH2HCYfa_N2N9kmu4L99d23rxTtaYaZh4cZZprmLcEfGdP4U4KUCcaaqA7vNYcUS91yrcmrZ_lBc1zrBuMtxpRg-80Bo1pIQcVh8_N8SW6OOcEQf8M2QblH13l4tD6kZURnsS5DH31ADxHQ7QB1BHRXAsxjSDOC5BFrr0NxMM15KnlaFdGhExc96nNBF1DRt5BqLvVN87qHoYbjp3jUfD__cnf6tb26ubg8PblqHRdibpXzveyYF5ZaLIkPjiole8sxI1JaRTgOQYK2oDjxhHXSKWWp6JVkmntgR83lzuszbMxU4gjl0WSI5m8hl3sDZY5uCGZ1s6BwR0nQnChve6GgCw7TDiS2anV93rmmxY7Bu3XnAsML6ctOij_MfX4wUggtOrkK3j8JSv61hDqbMVYXhgFSyEs1lHOupFCSrui7_9BNXsp6mZXqpKSaY81W6sOOciXXWkL_bxiCzfYpzPOnYH8AV3mpiQ</recordid><startdate>20200917</startdate><enddate>20200917</enddate><creator>Seo, Won Seok</creator><creator>Kim, Dae Ki</creator><creator>Han, Ji-Hoon</creator><creator>Park, Kang-Bak</creator><creator>Ryu, Su Chak</creator><creator>Min, Nam Ki</creator><creator>Kim, Joon Hyub</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200917</creationdate><title>Functionalization of Molybdenum Disulfide via Plasma Treatment and 3-Mercaptopropionic Acid for Gas Sensors</title><author>Seo, Won Seok ; Kim, Dae Ki ; Han, Ji-Hoon ; Park, Kang-Bak ; Ryu, Su Chak ; Min, Nam Ki ; Kim, Joon Hyub</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-8cdf763d5b2b071dec2887fb403177b8140ee7a9ba841d1367c88b25f87394da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Electrical properties</topic><topic>Functional groups</topic><topic>functionalization of 2D materials</topic><topic>Gas sensors</topic><topic>Graphene</topic><topic>Ligands</topic><topic>Mechanical properties</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>Multilayers</topic><topic>Plasma</topic><topic>Scanning electron microscopy</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Won Seok</creatorcontrib><creatorcontrib>Kim, Dae Ki</creatorcontrib><creatorcontrib>Han, Ji-Hoon</creatorcontrib><creatorcontrib>Park, Kang-Bak</creatorcontrib><creatorcontrib>Ryu, Su Chak</creatorcontrib><creatorcontrib>Min, Nam Ki</creatorcontrib><creatorcontrib>Kim, Joon Hyub</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Won Seok</au><au>Kim, Dae Ki</au><au>Han, Ji-Hoon</au><au>Park, Kang-Bak</au><au>Ryu, Su Chak</au><au>Min, Nam Ki</au><au>Kim, Joon Hyub</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functionalization of Molybdenum Disulfide via Plasma Treatment and 3-Mercaptopropionic Acid for Gas Sensors</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2020-09-17</date><risdate>2020</risdate><volume>10</volume><issue>9</issue><spage>1860</spage><pages>1860-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Monolayer and multilayer molybdenum disulfide (MoS2) materials are semiconductors with direct/indirect bandgaps of 1.2–1.8 eV and are attractive due to their changes in response to electrical, physicochemical, biological, and mechanical factors. Since the desired electrical properties of MoS2 are known, research on its electrical properties has increased, with focus on the deposition and growth of large-area MoS2 and its functionalization. While research on the large-scale production of MoS2 is actively underway, there is a lack of studies on functionalization approaches, which are essential since functional groups can help to dissolve particles or provide adequate reactivity. Strategies for producing films of functionalized MoS2 are rare, and what methods do exist are either complex or inefficient. This work introduces an efficient way to functionalize MoS2. Functional groups are formed on the surface by exposing MoS2 with surface sulfur vacancies generated by plasma treatment to 3-mercaptopropionic acid. This technique can create 1.8 times as many carboxyl groups on the MoS2 surface compared with previously reported strategies. The MoS2-based gas sensor fabricated using the proposed method shows a 2.6 times higher sensitivity and much lower detection limit than the untreated device.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32957525</pmid><doi>10.3390/nano10091860</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2020-09, Vol.10 (9), p.1860
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ec23e80621e9418dbf58a6ec026a70b8
source Publicly Available Content Database; PubMed Central(OpenAccess)
subjects Electrical properties
Functional groups
functionalization of 2D materials
Gas sensors
Graphene
Ligands
Mechanical properties
Molybdenum
Molybdenum disulfide
Multilayers
Plasma
Scanning electron microscopy
Sensors
Spectrum analysis
Sulfur
title Functionalization of Molybdenum Disulfide via Plasma Treatment and 3-Mercaptopropionic Acid for Gas Sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functionalization%20of%20Molybdenum%20Disulfide%20via%20Plasma%20Treatment%20and%203-Mercaptopropionic%20Acid%20for%20Gas%20Sensors&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Seo,%20Won%20Seok&rft.date=2020-09-17&rft.volume=10&rft.issue=9&rft.spage=1860&rft.pages=1860-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano10091860&rft_dat=%3Cproquest_doaj_%3E2444875872%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-8cdf763d5b2b071dec2887fb403177b8140ee7a9ba841d1367c88b25f87394da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2677294093&rft_id=info:pmid/32957525&rfr_iscdi=true