Loading…

Microbiome study in irradiated mice treated with BIO 300, a promising radiation countermeasure

BACKGROUNDThe mammalian gut harbors very complex and diverse microbiota that play an important role in intestinal homeostasis and host health. Exposure to radiation results in dysbiosis of the gut microbiota leading to detrimental pathophysiological changes to the host. To alleviate the effects of i...

Full description

Saved in:
Bibliographic Details
Published in:Animal microbiome 2021-10, Vol.3 (1), p.71-71, Article 71
Main Authors: Cheema, Amrita K., Li, Yaoxiang, Singh, Jatinder, Johnson, Ryan, Girgis, Michael, Wise, Stephen Y., Fatanmi, Oluseyi O., Kaytor, Michael D., Singh, Vijay K.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:BACKGROUNDThe mammalian gut harbors very complex and diverse microbiota that play an important role in intestinal homeostasis and host health. Exposure to radiation results in dysbiosis of the gut microbiota leading to detrimental pathophysiological changes to the host. To alleviate the effects of irradiation, several candidate countermeasures are under investigation. BIO 300, containing synthetic genistein formulated as an amorphous solid dispersion or as an aqueous suspension of nanoparticles, is a promising candidate under advanced development. The aim of this study was to investigate the effects of BIO 300 on the gut microbiome and metabolome of mice exposed to 60Co gamma-radiation. The gut microbiota and metabolome of control and drug-treated mice exposed to radiation was characterized by bacterial 16S rRNA amplicon sequencing and untargeted metabolomics. RESULTSWe found that irradiation altered the Firmicutes/Bacteroidetes ratio and significantly decreased the relative abundance of Lactobacillus, both in BIO 300-treated and control mice; however, the ratio returned to near normal levels in BIO 300-treated mice by day 14 post-irradiation. Concomitantly, we also observed corrective shifts in metabolic pathways that were perturbed after irradiation. CONCLUSIONSOverall, the data presented show that radiation exposure led to a relative depletion of commensals like Lactobacillus leading to an inflammatory metabolic phenotype while the majority of the drug-treated mice showed alleviation of this condition primarily by restoration of normal gut microbiota. These results indicate that the radioprotective effects of BIO 300, at least in part, may involve correction of the host-microbiome metabolic axis.
ISSN:2524-4671
2524-4671
DOI:10.1186/s42523-021-00132-1