Loading…

Non-Invasive Cattle Body Temperature Measurement Using Infrared Thermography and Auxiliary Sensors

To achieve a sensitive and accurate method in body temperature measurement of cattle, this study explores the uses of infrared thermography (IRT), an anemometer, and a humiture meter as a multiple sensors architecture. The influence of environmental factors on IRT, such as wind speed, ambient temper...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2021-04, Vol.21 (7), p.2425
Main Authors: Wang, Fu-Kang, Shih, Ju-Yin, Juan, Pin-Hsun, Su, Ya-Chi, Wang, Yu-Chieh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To achieve a sensitive and accurate method in body temperature measurement of cattle, this study explores the uses of infrared thermography (IRT), an anemometer, and a humiture meter as a multiple sensors architecture. The influence of environmental factors on IRT, such as wind speed, ambient temperature, and humidity, was considered. The proposed signal processes removed the IRT frames affected by air flow, and also eliminated the IRT frames affected by random body movement of cattle using the frame difference method. In addition, the proposed calibration method reduced the impact of ambient temperature and humidity on IRT results, thereby increasing the accuracy of IRT temperature. The difference of mean value and standard deviation value between recorded rectal reference temperature and IRT temperature were 0.04 °C and 0.10 °C, respectively, and the proposed system substantially improved the measurement consistency of the IRT temperature and reference on cattle body temperature. Moreover, with a relatively small IRT image sensor, the combination of multiple sensors architecture and proper data processing still achieved good temperature accuracy. The result of the root-mean-square error (RMSE) was 0.74 °C, which is quite close to the accurate result of the IRT measurement.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21072425