Loading…
PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina
Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test the...
Saved in:
Published in: | Molecular therapy. Methods & clinical development 2016-01, Vol.3 (C), p.16051-16051, Article 16051 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c503t-64011f131626118bf785d22f34dbf0ffc49e3081fe32bb784b51d9865cd152c03 |
---|---|
cites | cdi_FETCH-LOGICAL-c503t-64011f131626118bf785d22f34dbf0ffc49e3081fe32bb784b51d9865cd152c03 |
container_end_page | 16051 |
container_issue | C |
container_start_page | 16051 |
container_title | Molecular therapy. Methods & clinical development |
container_volume | 3 |
creator | Hickmott, Jack W Chen, Chih-Yu Arenillas, David J Korecki, Andrea J Lam, Siu Ling Molday, Laurie L Bonaguro, Russell J Zhou, Michelle Chou, Alice Y Mathelier, Anthony Boye, Sanford L Hauswirth, William W Molday, Robert S Wasserman, Wyeth W Simpson, Elizabeth M |
description | Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia. |
doi_str_mv | 10.1038/mtm.2016.51 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ec3b5f27a8ba4237bd6536d98ddff289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ec3b5f27a8ba4237bd6536d98ddff289</doaj_id><sourcerecordid>2307589520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-64011f131626118bf785d22f34dbf0ffc49e3081fe32bb784b51d9865cd152c03</originalsourceid><addsrcrecordid>eNp9ks1rFDEYhwdRbKk9eZeAF0F2zZtMMpmLsBQ_ChWLqHgL-WyzzEzWJFPsf99Mt5bWg7nk68mT5OXXNC8BrwFT8W4s45pg4GsGT5pDQkm_wgzD0wfjg-Y45y2ure8wZf3z5oB0jHHM-sPm2_nmF0dfwhTOUxxjcSkjm8KVQ8nlkoIpziL3Z1dnOcQJ-UqhtNn8RGFC5dIhZeehoDHOeTlSwqReNM-8GrI7vuuPmh8fP3w_-bw6-_rp9GRztjIM07LiLQbwQIETDiC07wSzhHjaWu2x96btHcUCvKNE6060moHtBWfGAiMG06PmdO-1UW3lLoVRpWsZVZC3CzFdSJVKMIOTzlDNPOmU0KoltNOWM8qrzVrvieir6_3etZv16KxxU0lqeCR9vDOFS3kRr2Tbi_oNqII3d4IUf8-1dHIM2bhhUJOrtZEgoIWWQregr_9Bt3FOUy2VJBR3TPSM4P9R1YVZi8nttW_3lEkx5-T8_ZMByyUgsgZELgGRbKFfPfzlPfs3DvQGWP-0kw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1810540211</pqid></control><display><type>article</type><title>PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina</title><source>ScienceDirect®</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Hickmott, Jack W ; Chen, Chih-Yu ; Arenillas, David J ; Korecki, Andrea J ; Lam, Siu Ling ; Molday, Laurie L ; Bonaguro, Russell J ; Zhou, Michelle ; Chou, Alice Y ; Mathelier, Anthony ; Boye, Sanford L ; Hauswirth, William W ; Molday, Robert S ; Wasserman, Wyeth W ; Simpson, Elizabeth M</creator><creatorcontrib>Hickmott, Jack W ; Chen, Chih-Yu ; Arenillas, David J ; Korecki, Andrea J ; Lam, Siu Ling ; Molday, Laurie L ; Bonaguro, Russell J ; Zhou, Michelle ; Chou, Alice Y ; Mathelier, Anthony ; Boye, Sanford L ; Hauswirth, William W ; Molday, Robert S ; Wasserman, Wyeth W ; Simpson, Elizabeth M</creatorcontrib><description>Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia.</description><identifier>ISSN: 2329-0501</identifier><identifier>EISSN: 2329-0501</identifier><identifier>DOI: 10.1038/mtm.2016.51</identifier><identifier>PMID: 27556059</identifier><language>eng</language><publisher>United States: Elsevier Limited</publisher><subject>Aniridia ; Binding sites ; Bioinformatics ; Blindness ; Consortia ; Deoxyribonucleic acid ; Diabetic retinopathy ; DNA ; Engineering research ; Gene therapy ; Genomes ; Glaucoma ; Horizontal cells ; Medical research ; Mutation ; Neighborhoods ; Pax6 protein ; Plasmids ; Promoters ; Regulation ; Regulatory sequences ; Retina ; Software ; Stem cells ; Transcription factors</subject><ispartof>Molecular therapy. Methods & clinical development, 2016-01, Vol.3 (C), p.16051-16051, Article 16051</ispartof><rights>Copyright Nature Publishing Group Aug 2016</rights><rights>2016. Official journal of the American Society of Gene & Cell Therapy</rights><rights>Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy 2016 Official journal of the American Society of Gene & Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-64011f131626118bf785d22f34dbf0ffc49e3081fe32bb784b51d9865cd152c03</citedby><cites>FETCH-LOGICAL-c503t-64011f131626118bf785d22f34dbf0ffc49e3081fe32bb784b51d9865cd152c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980111/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2307589520?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27556059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hickmott, Jack W</creatorcontrib><creatorcontrib>Chen, Chih-Yu</creatorcontrib><creatorcontrib>Arenillas, David J</creatorcontrib><creatorcontrib>Korecki, Andrea J</creatorcontrib><creatorcontrib>Lam, Siu Ling</creatorcontrib><creatorcontrib>Molday, Laurie L</creatorcontrib><creatorcontrib>Bonaguro, Russell J</creatorcontrib><creatorcontrib>Zhou, Michelle</creatorcontrib><creatorcontrib>Chou, Alice Y</creatorcontrib><creatorcontrib>Mathelier, Anthony</creatorcontrib><creatorcontrib>Boye, Sanford L</creatorcontrib><creatorcontrib>Hauswirth, William W</creatorcontrib><creatorcontrib>Molday, Robert S</creatorcontrib><creatorcontrib>Wasserman, Wyeth W</creatorcontrib><creatorcontrib>Simpson, Elizabeth M</creatorcontrib><title>PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina</title><title>Molecular therapy. Methods & clinical development</title><addtitle>Mol Ther Methods Clin Dev</addtitle><description>Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia.</description><subject>Aniridia</subject><subject>Binding sites</subject><subject>Bioinformatics</subject><subject>Blindness</subject><subject>Consortia</subject><subject>Deoxyribonucleic acid</subject><subject>Diabetic retinopathy</subject><subject>DNA</subject><subject>Engineering research</subject><subject>Gene therapy</subject><subject>Genomes</subject><subject>Glaucoma</subject><subject>Horizontal cells</subject><subject>Medical research</subject><subject>Mutation</subject><subject>Neighborhoods</subject><subject>Pax6 protein</subject><subject>Plasmids</subject><subject>Promoters</subject><subject>Regulation</subject><subject>Regulatory sequences</subject><subject>Retina</subject><subject>Software</subject><subject>Stem cells</subject><subject>Transcription factors</subject><issn>2329-0501</issn><issn>2329-0501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1rFDEYhwdRbKk9eZeAF0F2zZtMMpmLsBQ_ChWLqHgL-WyzzEzWJFPsf99Mt5bWg7nk68mT5OXXNC8BrwFT8W4s45pg4GsGT5pDQkm_wgzD0wfjg-Y45y2ure8wZf3z5oB0jHHM-sPm2_nmF0dfwhTOUxxjcSkjm8KVQ8nlkoIpziL3Z1dnOcQJ-UqhtNn8RGFC5dIhZeehoDHOeTlSwqReNM-8GrI7vuuPmh8fP3w_-bw6-_rp9GRztjIM07LiLQbwQIETDiC07wSzhHjaWu2x96btHcUCvKNE6060moHtBWfGAiMG06PmdO-1UW3lLoVRpWsZVZC3CzFdSJVKMIOTzlDNPOmU0KoltNOWM8qrzVrvieir6_3etZv16KxxU0lqeCR9vDOFS3kRr2Tbi_oNqII3d4IUf8-1dHIM2bhhUJOrtZEgoIWWQregr_9Bt3FOUy2VJBR3TPSM4P9R1YVZi8nttW_3lEkx5-T8_ZMByyUgsgZELgGRbKFfPfzlPfs3DvQGWP-0kw</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Hickmott, Jack W</creator><creator>Chen, Chih-Yu</creator><creator>Arenillas, David J</creator><creator>Korecki, Andrea J</creator><creator>Lam, Siu Ling</creator><creator>Molday, Laurie L</creator><creator>Bonaguro, Russell J</creator><creator>Zhou, Michelle</creator><creator>Chou, Alice Y</creator><creator>Mathelier, Anthony</creator><creator>Boye, Sanford L</creator><creator>Hauswirth, William W</creator><creator>Molday, Robert S</creator><creator>Wasserman, Wyeth W</creator><creator>Simpson, Elizabeth M</creator><general>Elsevier Limited</general><general>Nature Publishing Group</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160101</creationdate><title>PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina</title><author>Hickmott, Jack W ; Chen, Chih-Yu ; Arenillas, David J ; Korecki, Andrea J ; Lam, Siu Ling ; Molday, Laurie L ; Bonaguro, Russell J ; Zhou, Michelle ; Chou, Alice Y ; Mathelier, Anthony ; Boye, Sanford L ; Hauswirth, William W ; Molday, Robert S ; Wasserman, Wyeth W ; Simpson, Elizabeth M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-64011f131626118bf785d22f34dbf0ffc49e3081fe32bb784b51d9865cd152c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aniridia</topic><topic>Binding sites</topic><topic>Bioinformatics</topic><topic>Blindness</topic><topic>Consortia</topic><topic>Deoxyribonucleic acid</topic><topic>Diabetic retinopathy</topic><topic>DNA</topic><topic>Engineering research</topic><topic>Gene therapy</topic><topic>Genomes</topic><topic>Glaucoma</topic><topic>Horizontal cells</topic><topic>Medical research</topic><topic>Mutation</topic><topic>Neighborhoods</topic><topic>Pax6 protein</topic><topic>Plasmids</topic><topic>Promoters</topic><topic>Regulation</topic><topic>Regulatory sequences</topic><topic>Retina</topic><topic>Software</topic><topic>Stem cells</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hickmott, Jack W</creatorcontrib><creatorcontrib>Chen, Chih-Yu</creatorcontrib><creatorcontrib>Arenillas, David J</creatorcontrib><creatorcontrib>Korecki, Andrea J</creatorcontrib><creatorcontrib>Lam, Siu Ling</creatorcontrib><creatorcontrib>Molday, Laurie L</creatorcontrib><creatorcontrib>Bonaguro, Russell J</creatorcontrib><creatorcontrib>Zhou, Michelle</creatorcontrib><creatorcontrib>Chou, Alice Y</creatorcontrib><creatorcontrib>Mathelier, Anthony</creatorcontrib><creatorcontrib>Boye, Sanford L</creatorcontrib><creatorcontrib>Hauswirth, William W</creatorcontrib><creatorcontrib>Molday, Robert S</creatorcontrib><creatorcontrib>Wasserman, Wyeth W</creatorcontrib><creatorcontrib>Simpson, Elizabeth M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecular therapy. Methods & clinical development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hickmott, Jack W</au><au>Chen, Chih-Yu</au><au>Arenillas, David J</au><au>Korecki, Andrea J</au><au>Lam, Siu Ling</au><au>Molday, Laurie L</au><au>Bonaguro, Russell J</au><au>Zhou, Michelle</au><au>Chou, Alice Y</au><au>Mathelier, Anthony</au><au>Boye, Sanford L</au><au>Hauswirth, William W</au><au>Molday, Robert S</au><au>Wasserman, Wyeth W</au><au>Simpson, Elizabeth M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina</atitle><jtitle>Molecular therapy. Methods & clinical development</jtitle><addtitle>Mol Ther Methods Clin Dev</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>3</volume><issue>C</issue><spage>16051</spage><epage>16051</epage><pages>16051-16051</pages><artnum>16051</artnum><issn>2329-0501</issn><eissn>2329-0501</eissn><abstract>Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia.</abstract><cop>United States</cop><pub>Elsevier Limited</pub><pmid>27556059</pmid><doi>10.1038/mtm.2016.51</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2329-0501 |
ispartof | Molecular therapy. Methods & clinical development, 2016-01, Vol.3 (C), p.16051-16051, Article 16051 |
issn | 2329-0501 2329-0501 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ec3b5f27a8ba4237bd6536d98ddff289 |
source | ScienceDirect®; Publicly Available Content Database; PubMed Central |
subjects | Aniridia Binding sites Bioinformatics Blindness Consortia Deoxyribonucleic acid Diabetic retinopathy DNA Engineering research Gene therapy Genomes Glaucoma Horizontal cells Medical research Mutation Neighborhoods Pax6 protein Plasmids Promoters Regulation Regulatory sequences Retina Software Stem cells Transcription factors |
title | PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T14%3A27%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PAX6%20MiniPromoters%20drive%20restricted%20expression%20from%20rAAV%20in%20the%20adult%20mouse%20retina&rft.jtitle=Molecular%20therapy.%20Methods%20&%20clinical%20development&rft.au=Hickmott,%20Jack%20W&rft.date=2016-01-01&rft.volume=3&rft.issue=C&rft.spage=16051&rft.epage=16051&rft.pages=16051-16051&rft.artnum=16051&rft.issn=2329-0501&rft.eissn=2329-0501&rft_id=info:doi/10.1038/mtm.2016.51&rft_dat=%3Cproquest_doaj_%3E2307589520%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c503t-64011f131626118bf785d22f34dbf0ffc49e3081fe32bb784b51d9865cd152c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1810540211&rft_id=info:pmid/27556059&rfr_iscdi=true |