Loading…
Analysis of hemagglutinin-mediated entry tropism of H5N1 avian influenza
Avian influenza virus H5N1 is a major concern as a potential global pandemic. It is thought that multiple key events must take place before efficient human-to-human transmission of the virus occurs. The first step in overcoming host restriction is viral entry which is mediated by HA, responsible for...
Saved in:
Published in: | Virology journal 2009-04, Vol.6 (39), p.39-39, Article 39 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Avian influenza virus H5N1 is a major concern as a potential global pandemic. It is thought that multiple key events must take place before efficient human-to-human transmission of the virus occurs. The first step in overcoming host restriction is viral entry which is mediated by HA, responsible for both viral attachment and viral/host membrane fusion. HA binds to glycans-containing receptors with terminal sialic acid (SA). It has been shown that avian influenza viruses preferentially bind to alpha2,3-linked SAs, while human influenza A viruses exhibit a preference for alpha2,6-linked SAs. Thus it is believed the precise linkage of SAs on the target cells dictate host tropism of the viruses.
We demonstrate that H5N1 HA/HIV pseudovirus can efficiently transduce several human cell lines including human lung cells. Interestingly, using a lectin binding assay we show that the presence of both alpha2,6-linked and alpha2,3-linked SAs on the target cells does not always correlate with efficient transduction. Further, HA substitutions of the residues implicated in switching SA-binding between avian and human species did not drastically affect HA-mediated transduction of the target cells or target cell binding.
Our results suggest that a host factor(s), which is yet to be identified, is required for H5N1 entry in the host cells. |
---|---|
ISSN: | 1743-422X 1743-422X |
DOI: | 10.1186/1743-422X-6-39 |