Loading…

Mechanism of C-N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation

Electrosynthesis of urea from CO 2 and NO X provides an exceptional opportunity for human society, given the increasingly available renewable energy. Urea electrosynthesis is challenging. In order to raise the overall electrosynthesis efficiency, the most critical reaction step for such electrosynth...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-09, Vol.13 (1), p.5471-5471, Article 5471
Main Authors: Liu, Xin, Jiao, Yan, Zheng, Yao, Jaroniec, Mietek, Qiao, Shi-Zhang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-365050f3d3f8fdbf50c57db2ff3522bcec7ad3723725409b5c0074a88a37f1173
cites cdi_FETCH-LOGICAL-c517t-365050f3d3f8fdbf50c57db2ff3522bcec7ad3723725409b5c0074a88a37f1173
container_end_page 5471
container_issue 1
container_start_page 5471
container_title Nature communications
container_volume 13
creator Liu, Xin
Jiao, Yan
Zheng, Yao
Jaroniec, Mietek
Qiao, Shi-Zhang
description Electrosynthesis of urea from CO 2 and NO X provides an exceptional opportunity for human society, given the increasingly available renewable energy. Urea electrosynthesis is challenging. In order to raise the overall electrosynthesis efficiency, the most critical reaction step for such electrosynthesis, C-N coupling, needs to be significantly improved. The C-N coupling can only happen at a narrow potential window, generally in the low overpotential region, and a fundamental understanding of the C-N coupling is needed for further development of this strategy. In this regard, we perform ab initio Molecular Dynamics simulations to reveal the origin of C-N coupling under a small electrode potential window with both the dynamic nature of water as a solvent, and the electrode potentials considered. We explore the key reaction networks for urea formation on Cu(100) surface in neutral electrolytes. Our work shows excellent agreement with experimentally observed selectivity under different potentials on the Cu electrode. We discover that the * NH and * CO are the key precursors for C-N bonds formation at low overpotential, while at high overpotential the C-N coupling occurs between adsorbed * NH and solvated CO. These insights provide vital information for future spectroscopic measurements and enable us to design new electrochemical systems for more value-added chemicals. Urea electrosyntehsis from CO2 and NOx is a challenging reaction that is becoming increasingly important. This work uses ab initio molecular dynamics simulations to reveal the origin of C-N coupling mechanisms and reaction networks in urea synthesis.
doi_str_mv 10.1038/s41467-022-33258-0
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ec57c248eabd4ddb99836ceef159b1a1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ec57c248eabd4ddb99836ceef159b1a1</doaj_id><sourcerecordid>2715166319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-365050f3d3f8fdbf50c57db2ff3522bcec7ad3723725409b5c0074a88a37f1173</originalsourceid><addsrcrecordid>eNp9kktv1DAUhSMEolXpH2BliQ2bUD9jZ4OERkArFdjA2rp-TT1K4sFOqs6_xzOpgLLAG1vX53zX1zpN85rgdwQzdVU44Z1sMaUtY1SoFj9rzinmpCWSsud_nc-ay1J2uC7WE8X5y-aMdYQIJel58_DF2zuYYhlRCmjTfkUmTa6gkPIIc0wTihPyg7dzThZmGA5ztGjJHtA-J7fYkyb7ew-Dd8gcEJhqibWMxlR9ywAZucMEY7QFlTjWwtHzqnkRYCj-8nG_aH58-vh9c93efvt8s_lw21pB5NyyTmCBA3MsqOBMENgK6QwNgQlKjfVWgmN1SkkFx70RFmPJQSlgMhAi2UVzs3Jdgp3e5zhCPugEUZ8KKW815DrT4LWvaEu58mAcd870vWKd9T4Q0RsCpLLer6z9YkbvrJ_mDMMT6NObKd7pbbrXPVe046oC3j4Ccvq5-DLrMRbrhwEmn5aiqSSCs16KY683_0h3aclT_aqTinQdI31V0VVlcyol-_D7MQTrY070mhNdc6JPOdG4mthqKlU8bX3-g_6P6xenXsD4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715166319</pqid></control><display><type>article</type><title>Mechanism of C-N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation</title><source>PMC (PubMed Central)</source><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Liu, Xin ; Jiao, Yan ; Zheng, Yao ; Jaroniec, Mietek ; Qiao, Shi-Zhang</creator><creatorcontrib>Liu, Xin ; Jiao, Yan ; Zheng, Yao ; Jaroniec, Mietek ; Qiao, Shi-Zhang</creatorcontrib><description>Electrosynthesis of urea from CO 2 and NO X provides an exceptional opportunity for human society, given the increasingly available renewable energy. Urea electrosynthesis is challenging. In order to raise the overall electrosynthesis efficiency, the most critical reaction step for such electrosynthesis, C-N coupling, needs to be significantly improved. The C-N coupling can only happen at a narrow potential window, generally in the low overpotential region, and a fundamental understanding of the C-N coupling is needed for further development of this strategy. In this regard, we perform ab initio Molecular Dynamics simulations to reveal the origin of C-N coupling under a small electrode potential window with both the dynamic nature of water as a solvent, and the electrode potentials considered. We explore the key reaction networks for urea formation on Cu(100) surface in neutral electrolytes. Our work shows excellent agreement with experimentally observed selectivity under different potentials on the Cu electrode. We discover that the * NH and * CO are the key precursors for C-N bonds formation at low overpotential, while at high overpotential the C-N coupling occurs between adsorbed * NH and solvated CO. These insights provide vital information for future spectroscopic measurements and enable us to design new electrochemical systems for more value-added chemicals. Urea electrosyntehsis from CO2 and NOx is a challenging reaction that is becoming increasingly important. This work uses ab initio molecular dynamics simulations to reveal the origin of C-N coupling mechanisms and reaction networks in urea synthesis.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-33258-0</identifier><identifier>PMID: 36115872</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/638/161 ; 639/638/563/606 ; 639/638/563/979 ; 639/638/77/887 ; Carbon dioxide ; Chemical synthesis ; Coupling (molecular) ; Electrochemistry ; Electrode potentials ; Electrodes ; Electrolytes ; Humanities and Social Sciences ; Molecular dynamics ; multidisciplinary ; Renewable energy ; Science ; Science (multidisciplinary) ; Selectivity ; Simulation ; Urea ; Ureas</subject><ispartof>Nature communications, 2022-09, Vol.13 (1), p.5471-5471, Article 5471</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-365050f3d3f8fdbf50c57db2ff3522bcec7ad3723725409b5c0074a88a37f1173</citedby><cites>FETCH-LOGICAL-c517t-365050f3d3f8fdbf50c57db2ff3522bcec7ad3723725409b5c0074a88a37f1173</cites><orcidid>0000-0003-1329-4290 ; 0000-0002-4568-8422 ; 0000-0002-2411-8041 ; 0000-0002-1178-5611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2715166319/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2715166319?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Jiao, Yan</creatorcontrib><creatorcontrib>Zheng, Yao</creatorcontrib><creatorcontrib>Jaroniec, Mietek</creatorcontrib><creatorcontrib>Qiao, Shi-Zhang</creatorcontrib><title>Mechanism of C-N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Electrosynthesis of urea from CO 2 and NO X provides an exceptional opportunity for human society, given the increasingly available renewable energy. Urea electrosynthesis is challenging. In order to raise the overall electrosynthesis efficiency, the most critical reaction step for such electrosynthesis, C-N coupling, needs to be significantly improved. The C-N coupling can only happen at a narrow potential window, generally in the low overpotential region, and a fundamental understanding of the C-N coupling is needed for further development of this strategy. In this regard, we perform ab initio Molecular Dynamics simulations to reveal the origin of C-N coupling under a small electrode potential window with both the dynamic nature of water as a solvent, and the electrode potentials considered. We explore the key reaction networks for urea formation on Cu(100) surface in neutral electrolytes. Our work shows excellent agreement with experimentally observed selectivity under different potentials on the Cu electrode. We discover that the * NH and * CO are the key precursors for C-N bonds formation at low overpotential, while at high overpotential the C-N coupling occurs between adsorbed * NH and solvated CO. These insights provide vital information for future spectroscopic measurements and enable us to design new electrochemical systems for more value-added chemicals. Urea electrosyntehsis from CO2 and NOx is a challenging reaction that is becoming increasingly important. This work uses ab initio molecular dynamics simulations to reveal the origin of C-N coupling mechanisms and reaction networks in urea synthesis.</description><subject>119/118</subject><subject>639/638/161</subject><subject>639/638/563/606</subject><subject>639/638/563/979</subject><subject>639/638/77/887</subject><subject>Carbon dioxide</subject><subject>Chemical synthesis</subject><subject>Coupling (molecular)</subject><subject>Electrochemistry</subject><subject>Electrode potentials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Humanities and Social Sciences</subject><subject>Molecular dynamics</subject><subject>multidisciplinary</subject><subject>Renewable energy</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Selectivity</subject><subject>Simulation</subject><subject>Urea</subject><subject>Ureas</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAUhSMEolXpH2BliQ2bUD9jZ4OERkArFdjA2rp-TT1K4sFOqs6_xzOpgLLAG1vX53zX1zpN85rgdwQzdVU44Z1sMaUtY1SoFj9rzinmpCWSsud_nc-ay1J2uC7WE8X5y-aMdYQIJel58_DF2zuYYhlRCmjTfkUmTa6gkPIIc0wTihPyg7dzThZmGA5ztGjJHtA-J7fYkyb7ew-Dd8gcEJhqibWMxlR9ywAZucMEY7QFlTjWwtHzqnkRYCj-8nG_aH58-vh9c93efvt8s_lw21pB5NyyTmCBA3MsqOBMENgK6QwNgQlKjfVWgmN1SkkFx70RFmPJQSlgMhAi2UVzs3Jdgp3e5zhCPugEUZ8KKW815DrT4LWvaEu58mAcd870vWKd9T4Q0RsCpLLer6z9YkbvrJ_mDMMT6NObKd7pbbrXPVe046oC3j4Ccvq5-DLrMRbrhwEmn5aiqSSCs16KY683_0h3aclT_aqTinQdI31V0VVlcyol-_D7MQTrY070mhNdc6JPOdG4mthqKlU8bX3-g_6P6xenXsD4</recordid><startdate>20220917</startdate><enddate>20220917</enddate><creator>Liu, Xin</creator><creator>Jiao, Yan</creator><creator>Zheng, Yao</creator><creator>Jaroniec, Mietek</creator><creator>Qiao, Shi-Zhang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1329-4290</orcidid><orcidid>https://orcid.org/0000-0002-4568-8422</orcidid><orcidid>https://orcid.org/0000-0002-2411-8041</orcidid><orcidid>https://orcid.org/0000-0002-1178-5611</orcidid></search><sort><creationdate>20220917</creationdate><title>Mechanism of C-N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation</title><author>Liu, Xin ; Jiao, Yan ; Zheng, Yao ; Jaroniec, Mietek ; Qiao, Shi-Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-365050f3d3f8fdbf50c57db2ff3522bcec7ad3723725409b5c0074a88a37f1173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>119/118</topic><topic>639/638/161</topic><topic>639/638/563/606</topic><topic>639/638/563/979</topic><topic>639/638/77/887</topic><topic>Carbon dioxide</topic><topic>Chemical synthesis</topic><topic>Coupling (molecular)</topic><topic>Electrochemistry</topic><topic>Electrode potentials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Humanities and Social Sciences</topic><topic>Molecular dynamics</topic><topic>multidisciplinary</topic><topic>Renewable energy</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Selectivity</topic><topic>Simulation</topic><topic>Urea</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Jiao, Yan</creatorcontrib><creatorcontrib>Zheng, Yao</creatorcontrib><creatorcontrib>Jaroniec, Mietek</creatorcontrib><creatorcontrib>Qiao, Shi-Zhang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xin</au><au>Jiao, Yan</au><au>Zheng, Yao</au><au>Jaroniec, Mietek</au><au>Qiao, Shi-Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of C-N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2022-09-17</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>5471</spage><epage>5471</epage><pages>5471-5471</pages><artnum>5471</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Electrosynthesis of urea from CO 2 and NO X provides an exceptional opportunity for human society, given the increasingly available renewable energy. Urea electrosynthesis is challenging. In order to raise the overall electrosynthesis efficiency, the most critical reaction step for such electrosynthesis, C-N coupling, needs to be significantly improved. The C-N coupling can only happen at a narrow potential window, generally in the low overpotential region, and a fundamental understanding of the C-N coupling is needed for further development of this strategy. In this regard, we perform ab initio Molecular Dynamics simulations to reveal the origin of C-N coupling under a small electrode potential window with both the dynamic nature of water as a solvent, and the electrode potentials considered. We explore the key reaction networks for urea formation on Cu(100) surface in neutral electrolytes. Our work shows excellent agreement with experimentally observed selectivity under different potentials on the Cu electrode. We discover that the * NH and * CO are the key precursors for C-N bonds formation at low overpotential, while at high overpotential the C-N coupling occurs between adsorbed * NH and solvated CO. These insights provide vital information for future spectroscopic measurements and enable us to design new electrochemical systems for more value-added chemicals. Urea electrosyntehsis from CO2 and NOx is a challenging reaction that is becoming increasingly important. This work uses ab initio molecular dynamics simulations to reveal the origin of C-N coupling mechanisms and reaction networks in urea synthesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36115872</pmid><doi>10.1038/s41467-022-33258-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1329-4290</orcidid><orcidid>https://orcid.org/0000-0002-4568-8422</orcidid><orcidid>https://orcid.org/0000-0002-2411-8041</orcidid><orcidid>https://orcid.org/0000-0002-1178-5611</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2022-09, Vol.13 (1), p.5471-5471, Article 5471
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ec57c248eabd4ddb99836ceef159b1a1
source PMC (PubMed Central); Nature; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access
subjects 119/118
639/638/161
639/638/563/606
639/638/563/979
639/638/77/887
Carbon dioxide
Chemical synthesis
Coupling (molecular)
Electrochemistry
Electrode potentials
Electrodes
Electrolytes
Humanities and Social Sciences
Molecular dynamics
multidisciplinary
Renewable energy
Science
Science (multidisciplinary)
Selectivity
Simulation
Urea
Ureas
title Mechanism of C-N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20C-N%20bonds%20formation%20in%20electrocatalytic%20urea%20production%20revealed%20by%20ab%20initio%20molecular%20dynamics%20simulation&rft.jtitle=Nature%20communications&rft.au=Liu,%20Xin&rft.date=2022-09-17&rft.volume=13&rft.issue=1&rft.spage=5471&rft.epage=5471&rft.pages=5471-5471&rft.artnum=5471&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-33258-0&rft_dat=%3Cproquest_doaj_%3E2715166319%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-365050f3d3f8fdbf50c57db2ff3522bcec7ad3723725409b5c0074a88a37f1173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2715166319&rft_id=info:pmid/36115872&rfr_iscdi=true