Loading…

Experimental investigation of the thermal propagation, emission identification, and venting-flow characteristics of a Li(Ni0.8Co0.1Mn0.1)O2 battery module

Aiming at improving and optimizing battery safety technology in large-format battery extensive applications, investigating thermal failure propagation, venting-flow behaviors and identifying emission components can provide significant design guidance. This work provides comprehensive experimental re...

Full description

Saved in:
Bibliographic Details
Published in:Case studies in thermal engineering 2023-09, Vol.49, p.103360, Article 103360
Main Authors: Wang, Yan, Song, Zenghai, Li, Yalun, Li, Cheng, Ren, Dongsheng, Feng, Xuning, Wang, Hewu, Lu, languang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-1d54687d2a6e2acc6fcce9fc2b3db13f305577e31ef7bfdd821f729cd1c3d6613
cites cdi_FETCH-LOGICAL-c414t-1d54687d2a6e2acc6fcce9fc2b3db13f305577e31ef7bfdd821f729cd1c3d6613
container_end_page
container_issue
container_start_page 103360
container_title Case studies in thermal engineering
container_volume 49
creator Wang, Yan
Song, Zenghai
Li, Yalun
Li, Cheng
Ren, Dongsheng
Feng, Xuning
Wang, Hewu
Lu, languang
description Aiming at improving and optimizing battery safety technology in large-format battery extensive applications, investigating thermal failure propagation, venting-flow behaviors and identifying emission components can provide significant design guidance. This work provides comprehensive experimental research on four 124Ah Li(Ni0.8Co0.1Mn0.1)O2 pouch cells connected in a configuration of one parallel and four series (1P4S). According to the experimental results, the maximum temperature of the front surfaces of cells 1–4 was 1302 °C, 976 °C, 1180 °C, and 956 °C, respectively, while the maximum temperature of the rear surfaces was 1101 °C, 938 °C, 945 °C, and 749 °C, respectively. Additionally, the failure propagation velocity for cells 1–4 was 1.15 mm/s, 0.94 mm/s, 0.88 mm/s, and 1.15 mm/s, respectively. Component identification was performed for the failed battery remains, and the solid emissions and venting gases were researched. The main component for solid particles and gases were found to be C, Ni, and H2, and their proportion was 62%, 47%, and 23%, respectively. Furthermore, the mass flow rate and critical velocity of each pouch cell were derived using the state equation for ideal gases and the isotropic flow law. The mass flow rate of cells 1–4 was 61.5 g/s, 40 g/s, 63 g/s, and 48 g/s, respectively, and the measured critical velocity was 318.5 m/s, 283.2 m/s, 267.1 m/s, and 253.5 m/s, respectively. Overall, this work provides a reference for creating safer cell-to-module designs, developing mitigation strategies, and extinguishing fire hazards for both electrical vehicles and power energy storage systems.
doi_str_mv 10.1016/j.csite.2023.103360
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ec5e66c0b6fc44678d23bc9da31ca9c7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214157X23006664</els_id><doaj_id>oai_doaj_org_article_ec5e66c0b6fc44678d23bc9da31ca9c7</doaj_id><sourcerecordid>S2214157X23006664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-1d54687d2a6e2acc6fcce9fc2b3db13f305577e31ef7bfdd821f729cd1c3d6613</originalsourceid><addsrcrecordid>eNp9UU1P3DAQjSqQiii_oBcfW6nZ-iOxs4ceqhUFpAUuIPVmOePx4lU2Xtlmgb_SX1uHoIpTD7ZH8-a9mfGrqs-MLhhl8vt2AclnXHDKRckIIemH6oRz1tSsVb-P3sUfq7OUtpRSpkTHmuak-nP-vMfodzhmMxA_HjBlvzHZh5EER_IDTifuCriPYW9m6BvBnU9pKvK2UL3z8AaY0ZLDlBo3tRvCE4EHEw3k0qQoQ5pUDVn7LzeeLrpVKEtcj-X6estJb3KpeyG7YB8H_FQdOzMkPHt7T6v7X-d3q8t6fXtxtfq5rqFhTa6ZbRvZKcuNRG4ApAPApQPeC9sz4QRtW6VQMHSqd9Z2nDnFl2AZCCslE6fV1axrg9nqffkME190MF6_JkLcaBPL6ANqhBalBNqXJk0jVWe56GFpjWBglqCKlpi1IIaUIrp_eozqyS291a9u6cktPbtVWD9mFpY1Dx6jTuBxBLQ-IuQyh_8v_y8__6Gw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experimental investigation of the thermal propagation, emission identification, and venting-flow characteristics of a Li(Ni0.8Co0.1Mn0.1)O2 battery module</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Yan ; Song, Zenghai ; Li, Yalun ; Li, Cheng ; Ren, Dongsheng ; Feng, Xuning ; Wang, Hewu ; Lu, languang</creator><creatorcontrib>Wang, Yan ; Song, Zenghai ; Li, Yalun ; Li, Cheng ; Ren, Dongsheng ; Feng, Xuning ; Wang, Hewu ; Lu, languang</creatorcontrib><description>Aiming at improving and optimizing battery safety technology in large-format battery extensive applications, investigating thermal failure propagation, venting-flow behaviors and identifying emission components can provide significant design guidance. This work provides comprehensive experimental research on four 124Ah Li(Ni0.8Co0.1Mn0.1)O2 pouch cells connected in a configuration of one parallel and four series (1P4S). According to the experimental results, the maximum temperature of the front surfaces of cells 1–4 was 1302 °C, 976 °C, 1180 °C, and 956 °C, respectively, while the maximum temperature of the rear surfaces was 1101 °C, 938 °C, 945 °C, and 749 °C, respectively. Additionally, the failure propagation velocity for cells 1–4 was 1.15 mm/s, 0.94 mm/s, 0.88 mm/s, and 1.15 mm/s, respectively. Component identification was performed for the failed battery remains, and the solid emissions and venting gases were researched. The main component for solid particles and gases were found to be C, Ni, and H2, and their proportion was 62%, 47%, and 23%, respectively. Furthermore, the mass flow rate and critical velocity of each pouch cell were derived using the state equation for ideal gases and the isotropic flow law. The mass flow rate of cells 1–4 was 61.5 g/s, 40 g/s, 63 g/s, and 48 g/s, respectively, and the measured critical velocity was 318.5 m/s, 283.2 m/s, 267.1 m/s, and 253.5 m/s, respectively. Overall, this work provides a reference for creating safer cell-to-module designs, developing mitigation strategies, and extinguishing fire hazards for both electrical vehicles and power energy storage systems.</description><identifier>ISSN: 2214-157X</identifier><identifier>EISSN: 2214-157X</identifier><identifier>DOI: 10.1016/j.csite.2023.103360</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Component identification ; Failure propagation rate ; Mass flow rate ; Maximum temperature ; Thermal failure prorogation</subject><ispartof>Case studies in thermal engineering, 2023-09, Vol.49, p.103360, Article 103360</ispartof><rights>2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-1d54687d2a6e2acc6fcce9fc2b3db13f305577e31ef7bfdd821f729cd1c3d6613</citedby><cites>FETCH-LOGICAL-c414t-1d54687d2a6e2acc6fcce9fc2b3db13f305577e31ef7bfdd821f729cd1c3d6613</cites><orcidid>0000-0003-0992-2071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2214157X23006664$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Song, Zenghai</creatorcontrib><creatorcontrib>Li, Yalun</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Ren, Dongsheng</creatorcontrib><creatorcontrib>Feng, Xuning</creatorcontrib><creatorcontrib>Wang, Hewu</creatorcontrib><creatorcontrib>Lu, languang</creatorcontrib><title>Experimental investigation of the thermal propagation, emission identification, and venting-flow characteristics of a Li(Ni0.8Co0.1Mn0.1)O2 battery module</title><title>Case studies in thermal engineering</title><description>Aiming at improving and optimizing battery safety technology in large-format battery extensive applications, investigating thermal failure propagation, venting-flow behaviors and identifying emission components can provide significant design guidance. This work provides comprehensive experimental research on four 124Ah Li(Ni0.8Co0.1Mn0.1)O2 pouch cells connected in a configuration of one parallel and four series (1P4S). According to the experimental results, the maximum temperature of the front surfaces of cells 1–4 was 1302 °C, 976 °C, 1180 °C, and 956 °C, respectively, while the maximum temperature of the rear surfaces was 1101 °C, 938 °C, 945 °C, and 749 °C, respectively. Additionally, the failure propagation velocity for cells 1–4 was 1.15 mm/s, 0.94 mm/s, 0.88 mm/s, and 1.15 mm/s, respectively. Component identification was performed for the failed battery remains, and the solid emissions and venting gases were researched. The main component for solid particles and gases were found to be C, Ni, and H2, and their proportion was 62%, 47%, and 23%, respectively. Furthermore, the mass flow rate and critical velocity of each pouch cell were derived using the state equation for ideal gases and the isotropic flow law. The mass flow rate of cells 1–4 was 61.5 g/s, 40 g/s, 63 g/s, and 48 g/s, respectively, and the measured critical velocity was 318.5 m/s, 283.2 m/s, 267.1 m/s, and 253.5 m/s, respectively. Overall, this work provides a reference for creating safer cell-to-module designs, developing mitigation strategies, and extinguishing fire hazards for both electrical vehicles and power energy storage systems.</description><subject>Component identification</subject><subject>Failure propagation rate</subject><subject>Mass flow rate</subject><subject>Maximum temperature</subject><subject>Thermal failure prorogation</subject><issn>2214-157X</issn><issn>2214-157X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UU1P3DAQjSqQiii_oBcfW6nZ-iOxs4ceqhUFpAUuIPVmOePx4lU2Xtlmgb_SX1uHoIpTD7ZH8-a9mfGrqs-MLhhl8vt2AclnXHDKRckIIemH6oRz1tSsVb-P3sUfq7OUtpRSpkTHmuak-nP-vMfodzhmMxA_HjBlvzHZh5EER_IDTifuCriPYW9m6BvBnU9pKvK2UL3z8AaY0ZLDlBo3tRvCE4EHEw3k0qQoQ5pUDVn7LzeeLrpVKEtcj-X6estJb3KpeyG7YB8H_FQdOzMkPHt7T6v7X-d3q8t6fXtxtfq5rqFhTa6ZbRvZKcuNRG4ApAPApQPeC9sz4QRtW6VQMHSqd9Z2nDnFl2AZCCslE6fV1axrg9nqffkME190MF6_JkLcaBPL6ANqhBalBNqXJk0jVWe56GFpjWBglqCKlpi1IIaUIrp_eozqyS291a9u6cktPbtVWD9mFpY1Dx6jTuBxBLQ-IuQyh_8v_y8__6Gw</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Wang, Yan</creator><creator>Song, Zenghai</creator><creator>Li, Yalun</creator><creator>Li, Cheng</creator><creator>Ren, Dongsheng</creator><creator>Feng, Xuning</creator><creator>Wang, Hewu</creator><creator>Lu, languang</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0992-2071</orcidid></search><sort><creationdate>202309</creationdate><title>Experimental investigation of the thermal propagation, emission identification, and venting-flow characteristics of a Li(Ni0.8Co0.1Mn0.1)O2 battery module</title><author>Wang, Yan ; Song, Zenghai ; Li, Yalun ; Li, Cheng ; Ren, Dongsheng ; Feng, Xuning ; Wang, Hewu ; Lu, languang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-1d54687d2a6e2acc6fcce9fc2b3db13f305577e31ef7bfdd821f729cd1c3d6613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Component identification</topic><topic>Failure propagation rate</topic><topic>Mass flow rate</topic><topic>Maximum temperature</topic><topic>Thermal failure prorogation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Song, Zenghai</creatorcontrib><creatorcontrib>Li, Yalun</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Ren, Dongsheng</creatorcontrib><creatorcontrib>Feng, Xuning</creatorcontrib><creatorcontrib>Wang, Hewu</creatorcontrib><creatorcontrib>Lu, languang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Case studies in thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yan</au><au>Song, Zenghai</au><au>Li, Yalun</au><au>Li, Cheng</au><au>Ren, Dongsheng</au><au>Feng, Xuning</au><au>Wang, Hewu</au><au>Lu, languang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation of the thermal propagation, emission identification, and venting-flow characteristics of a Li(Ni0.8Co0.1Mn0.1)O2 battery module</atitle><jtitle>Case studies in thermal engineering</jtitle><date>2023-09</date><risdate>2023</risdate><volume>49</volume><spage>103360</spage><pages>103360-</pages><artnum>103360</artnum><issn>2214-157X</issn><eissn>2214-157X</eissn><abstract>Aiming at improving and optimizing battery safety technology in large-format battery extensive applications, investigating thermal failure propagation, venting-flow behaviors and identifying emission components can provide significant design guidance. This work provides comprehensive experimental research on four 124Ah Li(Ni0.8Co0.1Mn0.1)O2 pouch cells connected in a configuration of one parallel and four series (1P4S). According to the experimental results, the maximum temperature of the front surfaces of cells 1–4 was 1302 °C, 976 °C, 1180 °C, and 956 °C, respectively, while the maximum temperature of the rear surfaces was 1101 °C, 938 °C, 945 °C, and 749 °C, respectively. Additionally, the failure propagation velocity for cells 1–4 was 1.15 mm/s, 0.94 mm/s, 0.88 mm/s, and 1.15 mm/s, respectively. Component identification was performed for the failed battery remains, and the solid emissions and venting gases were researched. The main component for solid particles and gases were found to be C, Ni, and H2, and their proportion was 62%, 47%, and 23%, respectively. Furthermore, the mass flow rate and critical velocity of each pouch cell were derived using the state equation for ideal gases and the isotropic flow law. The mass flow rate of cells 1–4 was 61.5 g/s, 40 g/s, 63 g/s, and 48 g/s, respectively, and the measured critical velocity was 318.5 m/s, 283.2 m/s, 267.1 m/s, and 253.5 m/s, respectively. Overall, this work provides a reference for creating safer cell-to-module designs, developing mitigation strategies, and extinguishing fire hazards for both electrical vehicles and power energy storage systems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.csite.2023.103360</doi><orcidid>https://orcid.org/0000-0003-0992-2071</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2214-157X
ispartof Case studies in thermal engineering, 2023-09, Vol.49, p.103360, Article 103360
issn 2214-157X
2214-157X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ec5e66c0b6fc44678d23bc9da31ca9c7
source Elsevier ScienceDirect Journals
subjects Component identification
Failure propagation rate
Mass flow rate
Maximum temperature
Thermal failure prorogation
title Experimental investigation of the thermal propagation, emission identification, and venting-flow characteristics of a Li(Ni0.8Co0.1Mn0.1)O2 battery module
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation%20of%20the%20thermal%20propagation,%20emission%20identification,%20and%20venting-flow%20characteristics%20of%20a%20Li(Ni0.8Co0.1Mn0.1)O2%20battery%20module&rft.jtitle=Case%20studies%20in%20thermal%20engineering&rft.au=Wang,%20Yan&rft.date=2023-09&rft.volume=49&rft.spage=103360&rft.pages=103360-&rft.artnum=103360&rft.issn=2214-157X&rft.eissn=2214-157X&rft_id=info:doi/10.1016/j.csite.2023.103360&rft_dat=%3Celsevier_doaj_%3ES2214157X23006664%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-1d54687d2a6e2acc6fcce9fc2b3db13f305577e31ef7bfdd821f729cd1c3d6613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true