Loading…
Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks
The discovery of hydrogen-rich waters preserved below the Earth’s surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen o...
Saved in:
Published in: | Nature communications 2016-10, Vol.7 (1), p.13252-13252, Article 13252 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c512t-cba7df99266935b4ce7cb2f7588fdb9ab0d824c24b547c62303daccd6ccc94903 |
---|---|
cites | cdi_FETCH-LOGICAL-c512t-cba7df99266935b4ce7cb2f7588fdb9ab0d824c24b547c62303daccd6ccc94903 |
container_end_page | 13252 |
container_issue | 1 |
container_start_page | 13252 |
container_title | Nature communications |
container_volume | 7 |
creator | Li, L. Wing, B. A. Bui, T. H. McDermott, J. M. Slater, G. F. Wei, S. Lacrampe-Couloume, G. Lollar, B. Sherwood |
description | The discovery of hydrogen-rich waters preserved below the Earth’s surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water–rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO
·
and H
2
O
2
) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H
2
) and a complementary acceptor (sulfate) for the deep biosphere.
Precambrian rocks host a deep hydrosphere, but where dissolved sulfate, crucial for microbial life, comes from is unclear. At 2.4 km depth in the Canadian shield, Li
et al
. find that oxidation of sulfides in the host rocks creates sulfate thus providing a long-term mechanism for the deep biosphere sulfate. |
doi_str_mv | 10.1038/ncomms13252 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ec6808498d88451bacd577e7a11bfe8f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ec6808498d88451bacd577e7a11bfe8f</doaj_id><sourcerecordid>1836732044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-cba7df99266935b4ce7cb2f7588fdb9ab0d824c24b547c62303daccd6ccc94903</originalsourceid><addsrcrecordid>eNptks9rFTEQgBdRbKk9eZcFL4Ku5ucmexGkqC0UFNRzmEyyz33uJs9kV-nJf928bltexRySIfPly5BMVT2l5DUlXL8JGKcpU84ke1AdMyJoQxXjDw_io-o05y0pg3dUC_G4OmJKE8VFe1z9-bKM_ZLqCXJuhuD8zpcpzHWfAOchBthP9RDqvNi8pB7Qr7kl-fo3zD7lknUDljDXUI8xbJo8Q9kKm3Lo2o5XOPq95HPyCJNNA4Q6RfyRn1SPehizP71ZT6pvH95_PTtvLj99vDh7d9mgpGxu0IJyfdextu24tAK9Qst6JbXune3AEqeZQCasFApbxgl3gOhaROxER_hJdbF6XYSt2aVhgnRlIgzmeiOmjYE0D6VM47HVRItOO62FpBbQSaW8Akpt73VfXG9X126xk3dYnivBeE96PxOG72YTfxlJOsk0K4IXN4IUfy4-z2YaMvpxhODjkg3VvFW8fKAo6PN_0G1cUihPtaeYUprKtlAvVwpTzDn5_q4YSsy-T8xBnxT62WH9d-xtVxTg1Qrkkgobnw4u_Y_vL6CfzJE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1832778156</pqid></control><display><type>article</type><title>Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Li, L. ; Wing, B. A. ; Bui, T. H. ; McDermott, J. M. ; Slater, G. F. ; Wei, S. ; Lacrampe-Couloume, G. ; Lollar, B. Sherwood</creator><creatorcontrib>Li, L. ; Wing, B. A. ; Bui, T. H. ; McDermott, J. M. ; Slater, G. F. ; Wei, S. ; Lacrampe-Couloume, G. ; Lollar, B. Sherwood</creatorcontrib><description>The discovery of hydrogen-rich waters preserved below the Earth’s surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water–rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO
·
and H
2
O
2
) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H
2
) and a complementary acceptor (sulfate) for the deep biosphere.
Precambrian rocks host a deep hydrosphere, but where dissolved sulfate, crucial for microbial life, comes from is unclear. At 2.4 km depth in the Canadian shield, Li
et al
. find that oxidation of sulfides in the host rocks creates sulfate thus providing a long-term mechanism for the deep biosphere sulfate.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms13252</identifier><identifier>PMID: 27807346</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/2151/209 ; 704/2151/213/4114 ; 704/47/4112 ; Earth science ; Electrons ; Humanities and Social Sciences ; Metamorphism ; Minerals ; multidisciplinary ; Oxidation ; Science ; Science (multidisciplinary) ; Sulfur</subject><ispartof>Nature communications, 2016-10, Vol.7 (1), p.13252-13252, Article 13252</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Oct 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-cba7df99266935b4ce7cb2f7588fdb9ab0d824c24b547c62303daccd6ccc94903</citedby><cites>FETCH-LOGICAL-c512t-cba7df99266935b4ce7cb2f7588fdb9ab0d824c24b547c62303daccd6ccc94903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1832778156/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1832778156?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27807346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, L.</creatorcontrib><creatorcontrib>Wing, B. A.</creatorcontrib><creatorcontrib>Bui, T. H.</creatorcontrib><creatorcontrib>McDermott, J. M.</creatorcontrib><creatorcontrib>Slater, G. F.</creatorcontrib><creatorcontrib>Wei, S.</creatorcontrib><creatorcontrib>Lacrampe-Couloume, G.</creatorcontrib><creatorcontrib>Lollar, B. Sherwood</creatorcontrib><title>Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The discovery of hydrogen-rich waters preserved below the Earth’s surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water–rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO
·
and H
2
O
2
) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H
2
) and a complementary acceptor (sulfate) for the deep biosphere.
Precambrian rocks host a deep hydrosphere, but where dissolved sulfate, crucial for microbial life, comes from is unclear. At 2.4 km depth in the Canadian shield, Li
et al
. find that oxidation of sulfides in the host rocks creates sulfate thus providing a long-term mechanism for the deep biosphere sulfate.</description><subject>704/2151/209</subject><subject>704/2151/213/4114</subject><subject>704/47/4112</subject><subject>Earth science</subject><subject>Electrons</subject><subject>Humanities and Social Sciences</subject><subject>Metamorphism</subject><subject>Minerals</subject><subject>multidisciplinary</subject><subject>Oxidation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sulfur</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks9rFTEQgBdRbKk9eZcFL4Ku5ucmexGkqC0UFNRzmEyyz33uJs9kV-nJf928bltexRySIfPly5BMVT2l5DUlXL8JGKcpU84ke1AdMyJoQxXjDw_io-o05y0pg3dUC_G4OmJKE8VFe1z9-bKM_ZLqCXJuhuD8zpcpzHWfAOchBthP9RDqvNi8pB7Qr7kl-fo3zD7lknUDljDXUI8xbJo8Q9kKm3Lo2o5XOPq95HPyCJNNA4Q6RfyRn1SPehizP71ZT6pvH95_PTtvLj99vDh7d9mgpGxu0IJyfdextu24tAK9Qst6JbXune3AEqeZQCasFApbxgl3gOhaROxER_hJdbF6XYSt2aVhgnRlIgzmeiOmjYE0D6VM47HVRItOO62FpBbQSaW8Akpt73VfXG9X126xk3dYnivBeE96PxOG72YTfxlJOsk0K4IXN4IUfy4-z2YaMvpxhODjkg3VvFW8fKAo6PN_0G1cUihPtaeYUprKtlAvVwpTzDn5_q4YSsy-T8xBnxT62WH9d-xtVxTg1Qrkkgobnw4u_Y_vL6CfzJE</recordid><startdate>20161027</startdate><enddate>20161027</enddate><creator>Li, L.</creator><creator>Wing, B. A.</creator><creator>Bui, T. H.</creator><creator>McDermott, J. M.</creator><creator>Slater, G. F.</creator><creator>Wei, S.</creator><creator>Lacrampe-Couloume, G.</creator><creator>Lollar, B. Sherwood</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20161027</creationdate><title>Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks</title><author>Li, L. ; Wing, B. A. ; Bui, T. H. ; McDermott, J. M. ; Slater, G. F. ; Wei, S. ; Lacrampe-Couloume, G. ; Lollar, B. Sherwood</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-cba7df99266935b4ce7cb2f7588fdb9ab0d824c24b547c62303daccd6ccc94903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>704/2151/209</topic><topic>704/2151/213/4114</topic><topic>704/47/4112</topic><topic>Earth science</topic><topic>Electrons</topic><topic>Humanities and Social Sciences</topic><topic>Metamorphism</topic><topic>Minerals</topic><topic>multidisciplinary</topic><topic>Oxidation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, L.</creatorcontrib><creatorcontrib>Wing, B. A.</creatorcontrib><creatorcontrib>Bui, T. H.</creatorcontrib><creatorcontrib>McDermott, J. M.</creatorcontrib><creatorcontrib>Slater, G. F.</creatorcontrib><creatorcontrib>Wei, S.</creatorcontrib><creatorcontrib>Lacrampe-Couloume, G.</creatorcontrib><creatorcontrib>Lollar, B. Sherwood</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, L.</au><au>Wing, B. A.</au><au>Bui, T. H.</au><au>McDermott, J. M.</au><au>Slater, G. F.</au><au>Wei, S.</au><au>Lacrampe-Couloume, G.</au><au>Lollar, B. Sherwood</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-10-27</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>13252</spage><epage>13252</epage><pages>13252-13252</pages><artnum>13252</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The discovery of hydrogen-rich waters preserved below the Earth’s surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water–rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO
·
and H
2
O
2
) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H
2
) and a complementary acceptor (sulfate) for the deep biosphere.
Precambrian rocks host a deep hydrosphere, but where dissolved sulfate, crucial for microbial life, comes from is unclear. At 2.4 km depth in the Canadian shield, Li
et al
. find that oxidation of sulfides in the host rocks creates sulfate thus providing a long-term mechanism for the deep biosphere sulfate.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27807346</pmid><doi>10.1038/ncomms13252</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2016-10, Vol.7 (1), p.13252-13252, Article 13252 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ec6808498d88451bacd577e7a11bfe8f |
source | PubMed (Medline); Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 704/2151/209 704/2151/213/4114 704/47/4112 Earth science Electrons Humanities and Social Sciences Metamorphism Minerals multidisciplinary Oxidation Science Science (multidisciplinary) Sulfur |
title | Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfur%20mass-independent%20fractionation%20in%20subsurface%20fracture%20waters%20indicates%20a%20long-standing%20sulfur%20cycle%20in%20Precambrian%20rocks&rft.jtitle=Nature%20communications&rft.au=Li,%20L.&rft.date=2016-10-27&rft.volume=7&rft.issue=1&rft.spage=13252&rft.epage=13252&rft.pages=13252-13252&rft.artnum=13252&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms13252&rft_dat=%3Cproquest_doaj_%3E1836732044%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-cba7df99266935b4ce7cb2f7588fdb9ab0d824c24b547c62303daccd6ccc94903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1832778156&rft_id=info:pmid/27807346&rfr_iscdi=true |