Loading…
Confocal nonlinear optical imaging on hexagonal boron nitride nanosheets
Optical microscopy with optimal axial resolution is critical for precise visualization of two-dimensional flat-top structures. Here, we present sub-diffraction-limited ultrafast imaging of hexagonal boron nitride (hBN) nanosheets using a confocal focus-engineered coherent anti-Stokes Raman scatterin...
Saved in:
Published in: | PhotoniX 2023-12, Vol.4 (1), p.27-16, Article 27 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Optical microscopy with optimal axial resolution is critical for precise visualization of two-dimensional flat-top structures. Here, we present sub-diffraction-limited ultrafast imaging of hexagonal boron nitride (hBN) nanosheets using a confocal focus-engineered coherent anti-Stokes Raman scattering (cFE-CARS) microscopic system. By incorporating a pinhole with a diameter of approximately 30 μm, we effectively minimized the intensity of side lobes induced by circular partial pi-phase shift in the wavefront (diameter, d
0
) of the probe beam, as well as nonresonant background CARS intensities. Using axial-resolution-improved cFE-CARS (acFE-CARS), the achieved axial resolution is 350 nm, exhibiting a 4.3-folded increase in the signal-to-noise ratio compared to the previous case with 0.58 d
0
phase mask. This improvement can be accomplished by using a phase mask of 0.24 d
0
. Additionally, we employed nondegenerate phase matching with three temporally separable incident beams, which facilitated cross-sectional visualization of highly-sample-specific and vibration-sensitive signals in a pump-probe fashion with subpicosecond time resolution. Our observations reveal time-dependent CARS dephasing in hBN nanosheets, induced by Raman-free induction decay (0.66 ps) in the 1373 cm
−1
mode. |
---|---|
ISSN: | 2662-1991 2662-1991 |
DOI: | 10.1186/s43074-023-00103-6 |