Loading…
BY-SLAM: Dynamic Visual SLAM System Based on BEBLID and Semantic Information Extraction
SLAM is a critical technology for enabling autonomous navigation and positioning in unmanned vehicles. Traditional visual simultaneous localization and mapping algorithms are built upon the assumption of a static scene, overlooking the impact of dynamic targets within real-world environments. Interf...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-07, Vol.24 (14), p.4693 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c304t-866ede2206fe2187ae903f7292fa1fa081b6d6e54a8610fbb08bf77a5b457df53 |
container_end_page | |
container_issue | 14 |
container_start_page | 4693 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 24 |
creator | Zhu, Daixian Liu, Peixuan Qiu, Qiang Wei, Jiaxin Gong, Ruolin |
description | SLAM is a critical technology for enabling autonomous navigation and positioning in unmanned vehicles. Traditional visual simultaneous localization and mapping algorithms are built upon the assumption of a static scene, overlooking the impact of dynamic targets within real-world environments. Interference from dynamic targets can significantly degrade the system's localization accuracy or even lead to tracking failure. To address these issues, we propose a dynamic visual SLAM system named BY-SLAM, which is based on BEBLID and semantic information extraction. Initially, the BEBLID descriptor is introduced to describe Oriented FAST feature points, enhancing both feature point matching accuracy and speed. Subsequently, FasterNet replaces the backbone network of YOLOv8s to expedite semantic information extraction. By using the results of DBSCAN clustering object detection, a more refined semantic mask is obtained. Finally, by leveraging the semantic mask and epipolar constraints, dynamic feature points are discerned and eliminated, allowing for the utilization of only static feature points for pose estimation and the construction of a dense 3D map that excludes dynamic targets. Experimental evaluations are conducted on both the TUM RGB-D dataset and real-world scenarios and demonstrate the effectiveness of the proposed algorithm at filtering out dynamic targets within the scenes. On average, the localization accuracy for the TUM RGB-D dataset improves by 95.53% compared to ORB-SLAM3. Comparative analyses against classical dynamic SLAM systems further corroborate the improvement in localization accuracy, map readability, and robustness achieved by BY-SLAM. |
doi_str_mv | 10.3390/s24144693 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ec733475ac6741c381f64e3d73d5fb81</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ec733475ac6741c381f64e3d73d5fb81</doaj_id><sourcerecordid>3085079918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-866ede2206fe2187ae903f7292fa1fa081b6d6e54a8610fbb08bf77a5b457df53</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhq2qFVDKoX8AWeqlHFL8FdvhxsJCV1rEYfuhnqxJbKOskpjaicT--3pZukKcZjTzzKt39CL0mZJvnFfkPDFBhZAVf4eOqGCi0IyR96_6Q_QxpTUhjHOuD9BhPpKSVOQI_Z79KVbLy7sLfL0ZoG8b_KtNE3R4O8SrTRpdj2eQnMVhwLP5bLm4xjBYvHI9DGPmF4MPsYexzfv50xih2baf0AcPXXInL_UY_byZ_7j6XizvbxdXl8ui4USMhZbSWZcdSu8Y1QpcRbhXrGIeqAeiaS2tdKUALSnxdU107ZWCshalsr7kx2ix07UB1uYxtj3EjQnQmudBiA8GYrbZOeMaxblQJTRSCdpwTb0UjlvFbelrTbPW153WYwx_J5dG07epcV0HgwtTMpzokjJKJMnolzfoOkxxyJ8-U0RVFdWZOttRTQwpRef3Bikx2-TMPrnMnr4oTnXv7J78HxX_B6VXjug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085079918</pqid></control><display><type>article</type><title>BY-SLAM: Dynamic Visual SLAM System Based on BEBLID and Semantic Information Extraction</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Zhu, Daixian ; Liu, Peixuan ; Qiu, Qiang ; Wei, Jiaxin ; Gong, Ruolin</creator><creatorcontrib>Zhu, Daixian ; Liu, Peixuan ; Qiu, Qiang ; Wei, Jiaxin ; Gong, Ruolin</creatorcontrib><description>SLAM is a critical technology for enabling autonomous navigation and positioning in unmanned vehicles. Traditional visual simultaneous localization and mapping algorithms are built upon the assumption of a static scene, overlooking the impact of dynamic targets within real-world environments. Interference from dynamic targets can significantly degrade the system's localization accuracy or even lead to tracking failure. To address these issues, we propose a dynamic visual SLAM system named BY-SLAM, which is based on BEBLID and semantic information extraction. Initially, the BEBLID descriptor is introduced to describe Oriented FAST feature points, enhancing both feature point matching accuracy and speed. Subsequently, FasterNet replaces the backbone network of YOLOv8s to expedite semantic information extraction. By using the results of DBSCAN clustering object detection, a more refined semantic mask is obtained. Finally, by leveraging the semantic mask and epipolar constraints, dynamic feature points are discerned and eliminated, allowing for the utilization of only static feature points for pose estimation and the construction of a dense 3D map that excludes dynamic targets. Experimental evaluations are conducted on both the TUM RGB-D dataset and real-world scenarios and demonstrate the effectiveness of the proposed algorithm at filtering out dynamic targets within the scenes. On average, the localization accuracy for the TUM RGB-D dataset improves by 95.53% compared to ORB-SLAM3. Comparative analyses against classical dynamic SLAM systems further corroborate the improvement in localization accuracy, map readability, and robustness achieved by BY-SLAM.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24144693</identifier><identifier>PMID: 39066090</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; BEBLID ; Boxes ; clustering ; Deep learning ; epipolar constraint ; Failure ; FasterNet ; Geometry ; Localization ; Probability ; Robotics ; Semantics ; visual SLAM ; YOLOv8s</subject><ispartof>Sensors (Basel, Switzerland), 2024-07, Vol.24 (14), p.4693</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-866ede2206fe2187ae903f7292fa1fa081b6d6e54a8610fbb08bf77a5b457df53</cites><orcidid>0000-0003-4757-4194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3085079918/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3085079918?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39066090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Daixian</creatorcontrib><creatorcontrib>Liu, Peixuan</creatorcontrib><creatorcontrib>Qiu, Qiang</creatorcontrib><creatorcontrib>Wei, Jiaxin</creatorcontrib><creatorcontrib>Gong, Ruolin</creatorcontrib><title>BY-SLAM: Dynamic Visual SLAM System Based on BEBLID and Semantic Information Extraction</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>SLAM is a critical technology for enabling autonomous navigation and positioning in unmanned vehicles. Traditional visual simultaneous localization and mapping algorithms are built upon the assumption of a static scene, overlooking the impact of dynamic targets within real-world environments. Interference from dynamic targets can significantly degrade the system's localization accuracy or even lead to tracking failure. To address these issues, we propose a dynamic visual SLAM system named BY-SLAM, which is based on BEBLID and semantic information extraction. Initially, the BEBLID descriptor is introduced to describe Oriented FAST feature points, enhancing both feature point matching accuracy and speed. Subsequently, FasterNet replaces the backbone network of YOLOv8s to expedite semantic information extraction. By using the results of DBSCAN clustering object detection, a more refined semantic mask is obtained. Finally, by leveraging the semantic mask and epipolar constraints, dynamic feature points are discerned and eliminated, allowing for the utilization of only static feature points for pose estimation and the construction of a dense 3D map that excludes dynamic targets. Experimental evaluations are conducted on both the TUM RGB-D dataset and real-world scenarios and demonstrate the effectiveness of the proposed algorithm at filtering out dynamic targets within the scenes. On average, the localization accuracy for the TUM RGB-D dataset improves by 95.53% compared to ORB-SLAM3. Comparative analyses against classical dynamic SLAM systems further corroborate the improvement in localization accuracy, map readability, and robustness achieved by BY-SLAM.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>BEBLID</subject><subject>Boxes</subject><subject>clustering</subject><subject>Deep learning</subject><subject>epipolar constraint</subject><subject>Failure</subject><subject>FasterNet</subject><subject>Geometry</subject><subject>Localization</subject><subject>Probability</subject><subject>Robotics</subject><subject>Semantics</subject><subject>visual SLAM</subject><subject>YOLOv8s</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1P3DAQhq2qFVDKoX8AWeqlHFL8FdvhxsJCV1rEYfuhnqxJbKOskpjaicT--3pZukKcZjTzzKt39CL0mZJvnFfkPDFBhZAVf4eOqGCi0IyR96_6Q_QxpTUhjHOuD9BhPpKSVOQI_Z79KVbLy7sLfL0ZoG8b_KtNE3R4O8SrTRpdj2eQnMVhwLP5bLm4xjBYvHI9DGPmF4MPsYexzfv50xih2baf0AcPXXInL_UY_byZ_7j6XizvbxdXl8ui4USMhZbSWZcdSu8Y1QpcRbhXrGIeqAeiaS2tdKUALSnxdU107ZWCshalsr7kx2ix07UB1uYxtj3EjQnQmudBiA8GYrbZOeMaxblQJTRSCdpwTb0UjlvFbelrTbPW153WYwx_J5dG07epcV0HgwtTMpzokjJKJMnolzfoOkxxyJ8-U0RVFdWZOttRTQwpRef3Bikx2-TMPrnMnr4oTnXv7J78HxX_B6VXjug</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>Zhu, Daixian</creator><creator>Liu, Peixuan</creator><creator>Qiu, Qiang</creator><creator>Wei, Jiaxin</creator><creator>Gong, Ruolin</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4757-4194</orcidid></search><sort><creationdate>20240719</creationdate><title>BY-SLAM: Dynamic Visual SLAM System Based on BEBLID and Semantic Information Extraction</title><author>Zhu, Daixian ; Liu, Peixuan ; Qiu, Qiang ; Wei, Jiaxin ; Gong, Ruolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-866ede2206fe2187ae903f7292fa1fa081b6d6e54a8610fbb08bf77a5b457df53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>BEBLID</topic><topic>Boxes</topic><topic>clustering</topic><topic>Deep learning</topic><topic>epipolar constraint</topic><topic>Failure</topic><topic>FasterNet</topic><topic>Geometry</topic><topic>Localization</topic><topic>Probability</topic><topic>Robotics</topic><topic>Semantics</topic><topic>visual SLAM</topic><topic>YOLOv8s</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Daixian</creatorcontrib><creatorcontrib>Liu, Peixuan</creatorcontrib><creatorcontrib>Qiu, Qiang</creatorcontrib><creatorcontrib>Wei, Jiaxin</creatorcontrib><creatorcontrib>Gong, Ruolin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Daixian</au><au>Liu, Peixuan</au><au>Qiu, Qiang</au><au>Wei, Jiaxin</au><au>Gong, Ruolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BY-SLAM: Dynamic Visual SLAM System Based on BEBLID and Semantic Information Extraction</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-07-19</date><risdate>2024</risdate><volume>24</volume><issue>14</issue><spage>4693</spage><pages>4693-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>SLAM is a critical technology for enabling autonomous navigation and positioning in unmanned vehicles. Traditional visual simultaneous localization and mapping algorithms are built upon the assumption of a static scene, overlooking the impact of dynamic targets within real-world environments. Interference from dynamic targets can significantly degrade the system's localization accuracy or even lead to tracking failure. To address these issues, we propose a dynamic visual SLAM system named BY-SLAM, which is based on BEBLID and semantic information extraction. Initially, the BEBLID descriptor is introduced to describe Oriented FAST feature points, enhancing both feature point matching accuracy and speed. Subsequently, FasterNet replaces the backbone network of YOLOv8s to expedite semantic information extraction. By using the results of DBSCAN clustering object detection, a more refined semantic mask is obtained. Finally, by leveraging the semantic mask and epipolar constraints, dynamic feature points are discerned and eliminated, allowing for the utilization of only static feature points for pose estimation and the construction of a dense 3D map that excludes dynamic targets. Experimental evaluations are conducted on both the TUM RGB-D dataset and real-world scenarios and demonstrate the effectiveness of the proposed algorithm at filtering out dynamic targets within the scenes. On average, the localization accuracy for the TUM RGB-D dataset improves by 95.53% compared to ORB-SLAM3. Comparative analyses against classical dynamic SLAM systems further corroborate the improvement in localization accuracy, map readability, and robustness achieved by BY-SLAM.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39066090</pmid><doi>10.3390/s24144693</doi><orcidid>https://orcid.org/0000-0003-4757-4194</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2024-07, Vol.24 (14), p.4693 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ec733475ac6741c381f64e3d73d5fb81 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Accuracy Algorithms BEBLID Boxes clustering Deep learning epipolar constraint Failure FasterNet Geometry Localization Probability Robotics Semantics visual SLAM YOLOv8s |
title | BY-SLAM: Dynamic Visual SLAM System Based on BEBLID and Semantic Information Extraction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BY-SLAM:%20Dynamic%20Visual%20SLAM%20System%20Based%20on%20BEBLID%20and%20Semantic%20Information%20Extraction&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Zhu,%20Daixian&rft.date=2024-07-19&rft.volume=24&rft.issue=14&rft.spage=4693&rft.pages=4693-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24144693&rft_dat=%3Cproquest_doaj_%3E3085079918%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c304t-866ede2206fe2187ae903f7292fa1fa081b6d6e54a8610fbb08bf77a5b457df53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3085079918&rft_id=info:pmid/39066090&rfr_iscdi=true |