Loading…

BY-SLAM: Dynamic Visual SLAM System Based on BEBLID and Semantic Information Extraction

SLAM is a critical technology for enabling autonomous navigation and positioning in unmanned vehicles. Traditional visual simultaneous localization and mapping algorithms are built upon the assumption of a static scene, overlooking the impact of dynamic targets within real-world environments. Interf...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-07, Vol.24 (14), p.4693
Main Authors: Zhu, Daixian, Liu, Peixuan, Qiu, Qiang, Wei, Jiaxin, Gong, Ruolin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c304t-866ede2206fe2187ae903f7292fa1fa081b6d6e54a8610fbb08bf77a5b457df53
container_end_page
container_issue 14
container_start_page 4693
container_title Sensors (Basel, Switzerland)
container_volume 24
creator Zhu, Daixian
Liu, Peixuan
Qiu, Qiang
Wei, Jiaxin
Gong, Ruolin
description SLAM is a critical technology for enabling autonomous navigation and positioning in unmanned vehicles. Traditional visual simultaneous localization and mapping algorithms are built upon the assumption of a static scene, overlooking the impact of dynamic targets within real-world environments. Interference from dynamic targets can significantly degrade the system's localization accuracy or even lead to tracking failure. To address these issues, we propose a dynamic visual SLAM system named BY-SLAM, which is based on BEBLID and semantic information extraction. Initially, the BEBLID descriptor is introduced to describe Oriented FAST feature points, enhancing both feature point matching accuracy and speed. Subsequently, FasterNet replaces the backbone network of YOLOv8s to expedite semantic information extraction. By using the results of DBSCAN clustering object detection, a more refined semantic mask is obtained. Finally, by leveraging the semantic mask and epipolar constraints, dynamic feature points are discerned and eliminated, allowing for the utilization of only static feature points for pose estimation and the construction of a dense 3D map that excludes dynamic targets. Experimental evaluations are conducted on both the TUM RGB-D dataset and real-world scenarios and demonstrate the effectiveness of the proposed algorithm at filtering out dynamic targets within the scenes. On average, the localization accuracy for the TUM RGB-D dataset improves by 95.53% compared to ORB-SLAM3. Comparative analyses against classical dynamic SLAM systems further corroborate the improvement in localization accuracy, map readability, and robustness achieved by BY-SLAM.
doi_str_mv 10.3390/s24144693
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ec733475ac6741c381f64e3d73d5fb81</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ec733475ac6741c381f64e3d73d5fb81</doaj_id><sourcerecordid>3085079918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-866ede2206fe2187ae903f7292fa1fa081b6d6e54a8610fbb08bf77a5b457df53</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhq2qFVDKoX8AWeqlHFL8FdvhxsJCV1rEYfuhnqxJbKOskpjaicT--3pZukKcZjTzzKt39CL0mZJvnFfkPDFBhZAVf4eOqGCi0IyR96_6Q_QxpTUhjHOuD9BhPpKSVOQI_Z79KVbLy7sLfL0ZoG8b_KtNE3R4O8SrTRpdj2eQnMVhwLP5bLm4xjBYvHI9DGPmF4MPsYexzfv50xih2baf0AcPXXInL_UY_byZ_7j6XizvbxdXl8ui4USMhZbSWZcdSu8Y1QpcRbhXrGIeqAeiaS2tdKUALSnxdU107ZWCshalsr7kx2ix07UB1uYxtj3EjQnQmudBiA8GYrbZOeMaxblQJTRSCdpwTb0UjlvFbelrTbPW153WYwx_J5dG07epcV0HgwtTMpzokjJKJMnolzfoOkxxyJ8-U0RVFdWZOttRTQwpRef3Bikx2-TMPrnMnr4oTnXv7J78HxX_B6VXjug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085079918</pqid></control><display><type>article</type><title>BY-SLAM: Dynamic Visual SLAM System Based on BEBLID and Semantic Information Extraction</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Zhu, Daixian ; Liu, Peixuan ; Qiu, Qiang ; Wei, Jiaxin ; Gong, Ruolin</creator><creatorcontrib>Zhu, Daixian ; Liu, Peixuan ; Qiu, Qiang ; Wei, Jiaxin ; Gong, Ruolin</creatorcontrib><description>SLAM is a critical technology for enabling autonomous navigation and positioning in unmanned vehicles. Traditional visual simultaneous localization and mapping algorithms are built upon the assumption of a static scene, overlooking the impact of dynamic targets within real-world environments. Interference from dynamic targets can significantly degrade the system's localization accuracy or even lead to tracking failure. To address these issues, we propose a dynamic visual SLAM system named BY-SLAM, which is based on BEBLID and semantic information extraction. Initially, the BEBLID descriptor is introduced to describe Oriented FAST feature points, enhancing both feature point matching accuracy and speed. Subsequently, FasterNet replaces the backbone network of YOLOv8s to expedite semantic information extraction. By using the results of DBSCAN clustering object detection, a more refined semantic mask is obtained. Finally, by leveraging the semantic mask and epipolar constraints, dynamic feature points are discerned and eliminated, allowing for the utilization of only static feature points for pose estimation and the construction of a dense 3D map that excludes dynamic targets. Experimental evaluations are conducted on both the TUM RGB-D dataset and real-world scenarios and demonstrate the effectiveness of the proposed algorithm at filtering out dynamic targets within the scenes. On average, the localization accuracy for the TUM RGB-D dataset improves by 95.53% compared to ORB-SLAM3. Comparative analyses against classical dynamic SLAM systems further corroborate the improvement in localization accuracy, map readability, and robustness achieved by BY-SLAM.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24144693</identifier><identifier>PMID: 39066090</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; BEBLID ; Boxes ; clustering ; Deep learning ; epipolar constraint ; Failure ; FasterNet ; Geometry ; Localization ; Probability ; Robotics ; Semantics ; visual SLAM ; YOLOv8s</subject><ispartof>Sensors (Basel, Switzerland), 2024-07, Vol.24 (14), p.4693</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-866ede2206fe2187ae903f7292fa1fa081b6d6e54a8610fbb08bf77a5b457df53</cites><orcidid>0000-0003-4757-4194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3085079918/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3085079918?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39066090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Daixian</creatorcontrib><creatorcontrib>Liu, Peixuan</creatorcontrib><creatorcontrib>Qiu, Qiang</creatorcontrib><creatorcontrib>Wei, Jiaxin</creatorcontrib><creatorcontrib>Gong, Ruolin</creatorcontrib><title>BY-SLAM: Dynamic Visual SLAM System Based on BEBLID and Semantic Information Extraction</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>SLAM is a critical technology for enabling autonomous navigation and positioning in unmanned vehicles. Traditional visual simultaneous localization and mapping algorithms are built upon the assumption of a static scene, overlooking the impact of dynamic targets within real-world environments. Interference from dynamic targets can significantly degrade the system's localization accuracy or even lead to tracking failure. To address these issues, we propose a dynamic visual SLAM system named BY-SLAM, which is based on BEBLID and semantic information extraction. Initially, the BEBLID descriptor is introduced to describe Oriented FAST feature points, enhancing both feature point matching accuracy and speed. Subsequently, FasterNet replaces the backbone network of YOLOv8s to expedite semantic information extraction. By using the results of DBSCAN clustering object detection, a more refined semantic mask is obtained. Finally, by leveraging the semantic mask and epipolar constraints, dynamic feature points are discerned and eliminated, allowing for the utilization of only static feature points for pose estimation and the construction of a dense 3D map that excludes dynamic targets. Experimental evaluations are conducted on both the TUM RGB-D dataset and real-world scenarios and demonstrate the effectiveness of the proposed algorithm at filtering out dynamic targets within the scenes. On average, the localization accuracy for the TUM RGB-D dataset improves by 95.53% compared to ORB-SLAM3. Comparative analyses against classical dynamic SLAM systems further corroborate the improvement in localization accuracy, map readability, and robustness achieved by BY-SLAM.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>BEBLID</subject><subject>Boxes</subject><subject>clustering</subject><subject>Deep learning</subject><subject>epipolar constraint</subject><subject>Failure</subject><subject>FasterNet</subject><subject>Geometry</subject><subject>Localization</subject><subject>Probability</subject><subject>Robotics</subject><subject>Semantics</subject><subject>visual SLAM</subject><subject>YOLOv8s</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1P3DAQhq2qFVDKoX8AWeqlHFL8FdvhxsJCV1rEYfuhnqxJbKOskpjaicT--3pZukKcZjTzzKt39CL0mZJvnFfkPDFBhZAVf4eOqGCi0IyR96_6Q_QxpTUhjHOuD9BhPpKSVOQI_Z79KVbLy7sLfL0ZoG8b_KtNE3R4O8SrTRpdj2eQnMVhwLP5bLm4xjBYvHI9DGPmF4MPsYexzfv50xih2baf0AcPXXInL_UY_byZ_7j6XizvbxdXl8ui4USMhZbSWZcdSu8Y1QpcRbhXrGIeqAeiaS2tdKUALSnxdU107ZWCshalsr7kx2ix07UB1uYxtj3EjQnQmudBiA8GYrbZOeMaxblQJTRSCdpwTb0UjlvFbelrTbPW153WYwx_J5dG07epcV0HgwtTMpzokjJKJMnolzfoOkxxyJ8-U0RVFdWZOttRTQwpRef3Bikx2-TMPrnMnr4oTnXv7J78HxX_B6VXjug</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>Zhu, Daixian</creator><creator>Liu, Peixuan</creator><creator>Qiu, Qiang</creator><creator>Wei, Jiaxin</creator><creator>Gong, Ruolin</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4757-4194</orcidid></search><sort><creationdate>20240719</creationdate><title>BY-SLAM: Dynamic Visual SLAM System Based on BEBLID and Semantic Information Extraction</title><author>Zhu, Daixian ; Liu, Peixuan ; Qiu, Qiang ; Wei, Jiaxin ; Gong, Ruolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-866ede2206fe2187ae903f7292fa1fa081b6d6e54a8610fbb08bf77a5b457df53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>BEBLID</topic><topic>Boxes</topic><topic>clustering</topic><topic>Deep learning</topic><topic>epipolar constraint</topic><topic>Failure</topic><topic>FasterNet</topic><topic>Geometry</topic><topic>Localization</topic><topic>Probability</topic><topic>Robotics</topic><topic>Semantics</topic><topic>visual SLAM</topic><topic>YOLOv8s</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Daixian</creatorcontrib><creatorcontrib>Liu, Peixuan</creatorcontrib><creatorcontrib>Qiu, Qiang</creatorcontrib><creatorcontrib>Wei, Jiaxin</creatorcontrib><creatorcontrib>Gong, Ruolin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Daixian</au><au>Liu, Peixuan</au><au>Qiu, Qiang</au><au>Wei, Jiaxin</au><au>Gong, Ruolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BY-SLAM: Dynamic Visual SLAM System Based on BEBLID and Semantic Information Extraction</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-07-19</date><risdate>2024</risdate><volume>24</volume><issue>14</issue><spage>4693</spage><pages>4693-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>SLAM is a critical technology for enabling autonomous navigation and positioning in unmanned vehicles. Traditional visual simultaneous localization and mapping algorithms are built upon the assumption of a static scene, overlooking the impact of dynamic targets within real-world environments. Interference from dynamic targets can significantly degrade the system's localization accuracy or even lead to tracking failure. To address these issues, we propose a dynamic visual SLAM system named BY-SLAM, which is based on BEBLID and semantic information extraction. Initially, the BEBLID descriptor is introduced to describe Oriented FAST feature points, enhancing both feature point matching accuracy and speed. Subsequently, FasterNet replaces the backbone network of YOLOv8s to expedite semantic information extraction. By using the results of DBSCAN clustering object detection, a more refined semantic mask is obtained. Finally, by leveraging the semantic mask and epipolar constraints, dynamic feature points are discerned and eliminated, allowing for the utilization of only static feature points for pose estimation and the construction of a dense 3D map that excludes dynamic targets. Experimental evaluations are conducted on both the TUM RGB-D dataset and real-world scenarios and demonstrate the effectiveness of the proposed algorithm at filtering out dynamic targets within the scenes. On average, the localization accuracy for the TUM RGB-D dataset improves by 95.53% compared to ORB-SLAM3. Comparative analyses against classical dynamic SLAM systems further corroborate the improvement in localization accuracy, map readability, and robustness achieved by BY-SLAM.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39066090</pmid><doi>10.3390/s24144693</doi><orcidid>https://orcid.org/0000-0003-4757-4194</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2024-07, Vol.24 (14), p.4693
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ec733475ac6741c381f64e3d73d5fb81
source Open Access: PubMed Central; Publicly Available Content Database
subjects Accuracy
Algorithms
BEBLID
Boxes
clustering
Deep learning
epipolar constraint
Failure
FasterNet
Geometry
Localization
Probability
Robotics
Semantics
visual SLAM
YOLOv8s
title BY-SLAM: Dynamic Visual SLAM System Based on BEBLID and Semantic Information Extraction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BY-SLAM:%20Dynamic%20Visual%20SLAM%20System%20Based%20on%20BEBLID%20and%20Semantic%20Information%20Extraction&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Zhu,%20Daixian&rft.date=2024-07-19&rft.volume=24&rft.issue=14&rft.spage=4693&rft.pages=4693-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24144693&rft_dat=%3Cproquest_doaj_%3E3085079918%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c304t-866ede2206fe2187ae903f7292fa1fa081b6d6e54a8610fbb08bf77a5b457df53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3085079918&rft_id=info:pmid/39066090&rfr_iscdi=true