Loading…

Using de novo genome assembly and high-throughput sequencing to characterize the MHC region in a non-model bird, the Eurasian coot

Genes of the Major Histocompatibility Complex (MHC) form a key component of vertebrate adaptive immunity, as they code for molecules which bind antigens of intra- and extracellular pathogens (MHC class I and II, respectively) and present them to T cell receptors. In general, MHC genes are hyper-poly...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2022-04, Vol.12 (1), p.7031-7031, Article 7031
Main Authors: Pikus, Ewa, Minias, Piotr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c421t-7fe1f9ce2cad7bc1920e901c80346ac09b3949f66a1eadd30921136bd2b9671b3
container_end_page 7031
container_issue 1
container_start_page 7031
container_title Scientific reports
container_volume 12
creator Pikus, Ewa
Minias, Piotr
description Genes of the Major Histocompatibility Complex (MHC) form a key component of vertebrate adaptive immunity, as they code for molecules which bind antigens of intra- and extracellular pathogens (MHC class I and II, respectively) and present them to T cell receptors. In general, MHC genes are hyper-polymorphic and high MHC diversity is often maintained within natural populations (via balancing selection) and within individuals (via gene duplications). Because of its complex architecture with tandems of duplicated genes, characterization of MHC region in non-model vertebrate species still poses a major challenge. Here, we combined de novo genome assembly and high-throughput sequencing to characterize MHC polymorphism in a rallid bird species, the Eurasian coot Fulica atra . An analysis of genome assembly indicated high duplication rate at MHC-I, which was also supported by targeted sequencing of peptide-binding exons (at least five MHC-I loci genotyped). We found high allelic richness at both MHC-I and MHC-II, although signature of diversifying selection and recombination (gene conversion) was much stronger at MHC-II. Our results indicate that Eurasian coot retains extraordinary polymorphism at both MHC classes (when compared to other non-passerine bird species), although they may be subject to different evolutionary mechanism.
doi_str_mv 10.1038/s41598-022-11018-w
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ec84843b76e3429499c85f2547820311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ec84843b76e3429499c85f2547820311</doaj_id><sourcerecordid>2656988500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-7fe1f9ce2cad7bc1920e901c80346ac09b3949f66a1eadd30921136bd2b9671b3</originalsourceid><addsrcrecordid>eNp9ks1u1DAURiMEotXQF2CBLLFhQcB_SewNEhq1tFIRG7q2HOcm8SixB9tp1S558npmSmlZ4I0t-9xj--orircEfyKYic-Rk0qKElNaEoKJKG9eFMcU86qkjNKXT9ZHxUmMG5xHRSUn8nVxxCouBK7wcfH7Klo3oA6Q89ceDeD8DEjHCHM73SLtOjTaYSzTGPwyjNsloQi_FnBmV5Y8MqMO2iQI9g5QGgF9P1-jAIP1DlmHdPa6cvYdTKi1ofu4Z06XoKPVDhnv05viVa-nCCcP86q4Ojv9uT4vL398u1h_vSwNpySVTQ-klwao0V3TGiIpBomJEZjxWhssWya57OtaE9Bdx7CkhLC67Wgr64a0bFVcHLyd1xu1DXbW4VZ5bdV-w4dB6ZCsmUCBEVxw1jY1MJ6bJqURVU8r3giKWdauii8H13ZpZ-gMuBT09Ez6_MTZUQ3-WkmcW0-qLPjwIAg-tzMmNdtoYJq0A79ERetKUFoLukPf_4Nu_BJcbtWOqqUQFcaZogfKBB9jgP7xMQSrXWLUITEqJ0btE6NuctG7p994LPmTjwywAxDzkRsg_L37P9p7Dx7MdQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656988500</pqid></control><display><type>article</type><title>Using de novo genome assembly and high-throughput sequencing to characterize the MHC region in a non-model bird, the Eurasian coot</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Pikus, Ewa ; Minias, Piotr</creator><creatorcontrib>Pikus, Ewa ; Minias, Piotr</creatorcontrib><description>Genes of the Major Histocompatibility Complex (MHC) form a key component of vertebrate adaptive immunity, as they code for molecules which bind antigens of intra- and extracellular pathogens (MHC class I and II, respectively) and present them to T cell receptors. In general, MHC genes are hyper-polymorphic and high MHC diversity is often maintained within natural populations (via balancing selection) and within individuals (via gene duplications). Because of its complex architecture with tandems of duplicated genes, characterization of MHC region in non-model vertebrate species still poses a major challenge. Here, we combined de novo genome assembly and high-throughput sequencing to characterize MHC polymorphism in a rallid bird species, the Eurasian coot Fulica atra . An analysis of genome assembly indicated high duplication rate at MHC-I, which was also supported by targeted sequencing of peptide-binding exons (at least five MHC-I loci genotyped). We found high allelic richness at both MHC-I and MHC-II, although signature of diversifying selection and recombination (gene conversion) was much stronger at MHC-II. Our results indicate that Eurasian coot retains extraordinary polymorphism at both MHC classes (when compared to other non-passerine bird species), although they may be subject to different evolutionary mechanism.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-11018-w</identifier><identifier>PMID: 35488050</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/181 ; 631/208 ; 631/250 ; Adaptive immunity ; Animals ; Antigens ; Birds ; Birds - genetics ; Exons ; Gene conversion ; Gene Duplication ; Genes ; Genomes ; High-Throughput Nucleotide Sequencing ; Humanities and Social Sciences ; Humans ; Lymphocytes T ; Major histocompatibility complex ; Major Histocompatibility Complex - genetics ; multidisciplinary ; Natural populations ; Next-generation sequencing ; Phylogeny ; Polymorphism ; Recombination ; Science ; Science (multidisciplinary) ; Species ; T cell receptors ; Vertebrates</subject><ispartof>Scientific reports, 2022-04, Vol.12 (1), p.7031-7031, Article 7031</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c421t-7fe1f9ce2cad7bc1920e901c80346ac09b3949f66a1eadd30921136bd2b9671b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2656988500/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2656988500?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35488050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pikus, Ewa</creatorcontrib><creatorcontrib>Minias, Piotr</creatorcontrib><title>Using de novo genome assembly and high-throughput sequencing to characterize the MHC region in a non-model bird, the Eurasian coot</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Genes of the Major Histocompatibility Complex (MHC) form a key component of vertebrate adaptive immunity, as they code for molecules which bind antigens of intra- and extracellular pathogens (MHC class I and II, respectively) and present them to T cell receptors. In general, MHC genes are hyper-polymorphic and high MHC diversity is often maintained within natural populations (via balancing selection) and within individuals (via gene duplications). Because of its complex architecture with tandems of duplicated genes, characterization of MHC region in non-model vertebrate species still poses a major challenge. Here, we combined de novo genome assembly and high-throughput sequencing to characterize MHC polymorphism in a rallid bird species, the Eurasian coot Fulica atra . An analysis of genome assembly indicated high duplication rate at MHC-I, which was also supported by targeted sequencing of peptide-binding exons (at least five MHC-I loci genotyped). We found high allelic richness at both MHC-I and MHC-II, although signature of diversifying selection and recombination (gene conversion) was much stronger at MHC-II. Our results indicate that Eurasian coot retains extraordinary polymorphism at both MHC classes (when compared to other non-passerine bird species), although they may be subject to different evolutionary mechanism.</description><subject>631/181</subject><subject>631/208</subject><subject>631/250</subject><subject>Adaptive immunity</subject><subject>Animals</subject><subject>Antigens</subject><subject>Birds</subject><subject>Birds - genetics</subject><subject>Exons</subject><subject>Gene conversion</subject><subject>Gene Duplication</subject><subject>Genes</subject><subject>Genomes</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Lymphocytes T</subject><subject>Major histocompatibility complex</subject><subject>Major Histocompatibility Complex - genetics</subject><subject>multidisciplinary</subject><subject>Natural populations</subject><subject>Next-generation sequencing</subject><subject>Phylogeny</subject><subject>Polymorphism</subject><subject>Recombination</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Species</subject><subject>T cell receptors</subject><subject>Vertebrates</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAURiMEotXQF2CBLLFhQcB_SewNEhq1tFIRG7q2HOcm8SixB9tp1S558npmSmlZ4I0t-9xj--orircEfyKYic-Rk0qKElNaEoKJKG9eFMcU86qkjNKXT9ZHxUmMG5xHRSUn8nVxxCouBK7wcfH7Klo3oA6Q89ceDeD8DEjHCHM73SLtOjTaYSzTGPwyjNsloQi_FnBmV5Y8MqMO2iQI9g5QGgF9P1-jAIP1DlmHdPa6cvYdTKi1ofu4Z06XoKPVDhnv05viVa-nCCcP86q4Ojv9uT4vL398u1h_vSwNpySVTQ-klwao0V3TGiIpBomJEZjxWhssWya57OtaE9Bdx7CkhLC67Wgr64a0bFVcHLyd1xu1DXbW4VZ5bdV-w4dB6ZCsmUCBEVxw1jY1MJ6bJqURVU8r3giKWdauii8H13ZpZ-gMuBT09Ez6_MTZUQ3-WkmcW0-qLPjwIAg-tzMmNdtoYJq0A79ERetKUFoLukPf_4Nu_BJcbtWOqqUQFcaZogfKBB9jgP7xMQSrXWLUITEqJ0btE6NuctG7p994LPmTjwywAxDzkRsg_L37P9p7Dx7MdQ</recordid><startdate>20220429</startdate><enddate>20220429</enddate><creator>Pikus, Ewa</creator><creator>Minias, Piotr</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220429</creationdate><title>Using de novo genome assembly and high-throughput sequencing to characterize the MHC region in a non-model bird, the Eurasian coot</title><author>Pikus, Ewa ; Minias, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-7fe1f9ce2cad7bc1920e901c80346ac09b3949f66a1eadd30921136bd2b9671b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/181</topic><topic>631/208</topic><topic>631/250</topic><topic>Adaptive immunity</topic><topic>Animals</topic><topic>Antigens</topic><topic>Birds</topic><topic>Birds - genetics</topic><topic>Exons</topic><topic>Gene conversion</topic><topic>Gene Duplication</topic><topic>Genes</topic><topic>Genomes</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Lymphocytes T</topic><topic>Major histocompatibility complex</topic><topic>Major Histocompatibility Complex - genetics</topic><topic>multidisciplinary</topic><topic>Natural populations</topic><topic>Next-generation sequencing</topic><topic>Phylogeny</topic><topic>Polymorphism</topic><topic>Recombination</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Species</topic><topic>T cell receptors</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pikus, Ewa</creatorcontrib><creatorcontrib>Minias, Piotr</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pikus, Ewa</au><au>Minias, Piotr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using de novo genome assembly and high-throughput sequencing to characterize the MHC region in a non-model bird, the Eurasian coot</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2022-04-29</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>7031</spage><epage>7031</epage><pages>7031-7031</pages><artnum>7031</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Genes of the Major Histocompatibility Complex (MHC) form a key component of vertebrate adaptive immunity, as they code for molecules which bind antigens of intra- and extracellular pathogens (MHC class I and II, respectively) and present them to T cell receptors. In general, MHC genes are hyper-polymorphic and high MHC diversity is often maintained within natural populations (via balancing selection) and within individuals (via gene duplications). Because of its complex architecture with tandems of duplicated genes, characterization of MHC region in non-model vertebrate species still poses a major challenge. Here, we combined de novo genome assembly and high-throughput sequencing to characterize MHC polymorphism in a rallid bird species, the Eurasian coot Fulica atra . An analysis of genome assembly indicated high duplication rate at MHC-I, which was also supported by targeted sequencing of peptide-binding exons (at least five MHC-I loci genotyped). We found high allelic richness at both MHC-I and MHC-II, although signature of diversifying selection and recombination (gene conversion) was much stronger at MHC-II. Our results indicate that Eurasian coot retains extraordinary polymorphism at both MHC classes (when compared to other non-passerine bird species), although they may be subject to different evolutionary mechanism.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35488050</pmid><doi>10.1038/s41598-022-11018-w</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2022-04, Vol.12 (1), p.7031-7031, Article 7031
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ec84843b76e3429499c85f2547820311
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/181
631/208
631/250
Adaptive immunity
Animals
Antigens
Birds
Birds - genetics
Exons
Gene conversion
Gene Duplication
Genes
Genomes
High-Throughput Nucleotide Sequencing
Humanities and Social Sciences
Humans
Lymphocytes T
Major histocompatibility complex
Major Histocompatibility Complex - genetics
multidisciplinary
Natural populations
Next-generation sequencing
Phylogeny
Polymorphism
Recombination
Science
Science (multidisciplinary)
Species
T cell receptors
Vertebrates
title Using de novo genome assembly and high-throughput sequencing to characterize the MHC region in a non-model bird, the Eurasian coot
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20de%20novo%20genome%20assembly%20and%20high-throughput%20sequencing%20to%20characterize%20the%20MHC%20region%20in%20a%20non-model%20bird,%20the%20Eurasian%20coot&rft.jtitle=Scientific%20reports&rft.au=Pikus,%20Ewa&rft.date=2022-04-29&rft.volume=12&rft.issue=1&rft.spage=7031&rft.epage=7031&rft.pages=7031-7031&rft.artnum=7031&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-11018-w&rft_dat=%3Cproquest_doaj_%3E2656988500%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-7fe1f9ce2cad7bc1920e901c80346ac09b3949f66a1eadd30921136bd2b9671b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2656988500&rft_id=info:pmid/35488050&rfr_iscdi=true