Loading…
A generalized operational matrix of mixed partial derivative terms with applications to multi-order fractional partial differential equations
In this paper, a computational approach based on the operational matrices in conjunction with orthogonal shifted Legendre polynomials (OSLPs) is designed to solve numerically the multi-order partial differential equations of fractional order consisting of mixed partial derivative terms. Our computat...
Saved in:
Published in: | Alexandria engineering journal 2022-01, Vol.61 (1), p.135-145 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-749e449021a021a23c4f6f0d9fd5a5ca9b5d205e157cf39f6a9db6509f84a8d63 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-749e449021a021a23c4f6f0d9fd5a5ca9b5d205e157cf39f6a9db6509f84a8d63 |
container_end_page | 145 |
container_issue | 1 |
container_start_page | 135 |
container_title | Alexandria engineering journal |
container_volume | 61 |
creator | Talib, Imran Jarad, Fahd Mirza, Muhammad Umar Nawaz, Asma Riaz, Muhammad Bilal |
description | In this paper, a computational approach based on the operational matrices in conjunction with orthogonal shifted Legendre polynomials (OSLPs) is designed to solve numerically the multi-order partial differential equations of fractional order consisting of mixed partial derivative terms. Our computational approach has ability to reduce the fractional problems into a system of Sylvester types matrix equations which can be solved by using MATLAB builtin function lyap(.). The solution is approximated as a basis vectors of OSLPs. The efficiency and the numerical stability is examined by taking various test examples. |
doi_str_mv | 10.1016/j.aej.2021.04.067 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ec92a7f1f92c47518ebcadd3eef21eeb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1110016821003094</els_id><doaj_id>oai_doaj_org_article_ec92a7f1f92c47518ebcadd3eef21eeb</doaj_id><sourcerecordid>S1110016821003094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-749e449021a021a23c4f6f0d9fd5a5ca9b5d205e157cf39f6a9db6509f84a8d63</originalsourceid><addsrcrecordid>eNp9kUtOwzAQhrMAiar0AOx8gQQ7cZJarKqKR6VKbGBtTe1xcZTUwXFL4Q7cGfehLrFkeTwz_6cZ_Ulyx2jGKKvumwywyXKas4zyjFb1VTJijNE0Fqc3yWQYGhpPWQsuqlHyOyNr3KCH1v6gJq6PYbBuAy3pIHi7J86Qzu5jrQcfbMxr9HYXm3ZIAvpuIF82fBDo-9aqo3YgwZFu2wabOh-7ifGgztALxBqDHjfHD35uT8Lb5NpAO-Dk_I6T96fHt_lLunx9Xsxny1RxWoW05gI5F3FHONy8UNxUhmphdAmlArEqdU5LZGWtTCFMBUKvqpIKM-Uw1VUxThYnrnbQyN7bDvy3dGDlMeH8Wh7mVC1KVCKH2jAjcsXrkk1xpUDrAtHkDHEVWezEUt4Ng0dz4TEqD5bIRkZL5MESSbmMlkTNw0mDccmdRS8HZXGjUFuPKsQp7D_qP5uumxU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A generalized operational matrix of mixed partial derivative terms with applications to multi-order fractional partial differential equations</title><source>ScienceDirect</source><creator>Talib, Imran ; Jarad, Fahd ; Mirza, Muhammad Umar ; Nawaz, Asma ; Riaz, Muhammad Bilal</creator><creatorcontrib>Talib, Imran ; Jarad, Fahd ; Mirza, Muhammad Umar ; Nawaz, Asma ; Riaz, Muhammad Bilal</creatorcontrib><description>In this paper, a computational approach based on the operational matrices in conjunction with orthogonal shifted Legendre polynomials (OSLPs) is designed to solve numerically the multi-order partial differential equations of fractional order consisting of mixed partial derivative terms. Our computational approach has ability to reduce the fractional problems into a system of Sylvester types matrix equations which can be solved by using MATLAB builtin function lyap(.). The solution is approximated as a basis vectors of OSLPs. The efficiency and the numerical stability is examined by taking various test examples.</description><identifier>ISSN: 1110-0168</identifier><identifier>DOI: 10.1016/j.aej.2021.04.067</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Caputo derivative ; Legendre polynomials ; Mixed partial derivative terms ; Multi-term and Multi-order Fractional partial differential equations ; Operational matrices</subject><ispartof>Alexandria engineering journal, 2022-01, Vol.61 (1), p.135-145</ispartof><rights>2021 THE AUTHORS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-749e449021a021a23c4f6f0d9fd5a5ca9b5d205e157cf39f6a9db6509f84a8d63</citedby><cites>FETCH-LOGICAL-c406t-749e449021a021a23c4f6f0d9fd5a5ca9b5d205e157cf39f6a9db6509f84a8d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1110016821003094$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Talib, Imran</creatorcontrib><creatorcontrib>Jarad, Fahd</creatorcontrib><creatorcontrib>Mirza, Muhammad Umar</creatorcontrib><creatorcontrib>Nawaz, Asma</creatorcontrib><creatorcontrib>Riaz, Muhammad Bilal</creatorcontrib><title>A generalized operational matrix of mixed partial derivative terms with applications to multi-order fractional partial differential equations</title><title>Alexandria engineering journal</title><description>In this paper, a computational approach based on the operational matrices in conjunction with orthogonal shifted Legendre polynomials (OSLPs) is designed to solve numerically the multi-order partial differential equations of fractional order consisting of mixed partial derivative terms. Our computational approach has ability to reduce the fractional problems into a system of Sylvester types matrix equations which can be solved by using MATLAB builtin function lyap(.). The solution is approximated as a basis vectors of OSLPs. The efficiency and the numerical stability is examined by taking various test examples.</description><subject>Caputo derivative</subject><subject>Legendre polynomials</subject><subject>Mixed partial derivative terms</subject><subject>Multi-term and Multi-order Fractional partial differential equations</subject><subject>Operational matrices</subject><issn>1110-0168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUtOwzAQhrMAiar0AOx8gQQ7cZJarKqKR6VKbGBtTe1xcZTUwXFL4Q7cGfehLrFkeTwz_6cZ_Ulyx2jGKKvumwywyXKas4zyjFb1VTJijNE0Fqc3yWQYGhpPWQsuqlHyOyNr3KCH1v6gJq6PYbBuAy3pIHi7J86Qzu5jrQcfbMxr9HYXm3ZIAvpuIF82fBDo-9aqo3YgwZFu2wabOh-7ifGgztALxBqDHjfHD35uT8Lb5NpAO-Dk_I6T96fHt_lLunx9Xsxny1RxWoW05gI5F3FHONy8UNxUhmphdAmlArEqdU5LZGWtTCFMBUKvqpIKM-Uw1VUxThYnrnbQyN7bDvy3dGDlMeH8Wh7mVC1KVCKH2jAjcsXrkk1xpUDrAtHkDHEVWezEUt4Ng0dz4TEqD5bIRkZL5MESSbmMlkTNw0mDccmdRS8HZXGjUFuPKsQp7D_qP5uumxU</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Talib, Imran</creator><creator>Jarad, Fahd</creator><creator>Mirza, Muhammad Umar</creator><creator>Nawaz, Asma</creator><creator>Riaz, Muhammad Bilal</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202201</creationdate><title>A generalized operational matrix of mixed partial derivative terms with applications to multi-order fractional partial differential equations</title><author>Talib, Imran ; Jarad, Fahd ; Mirza, Muhammad Umar ; Nawaz, Asma ; Riaz, Muhammad Bilal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-749e449021a021a23c4f6f0d9fd5a5ca9b5d205e157cf39f6a9db6509f84a8d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Caputo derivative</topic><topic>Legendre polynomials</topic><topic>Mixed partial derivative terms</topic><topic>Multi-term and Multi-order Fractional partial differential equations</topic><topic>Operational matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talib, Imran</creatorcontrib><creatorcontrib>Jarad, Fahd</creatorcontrib><creatorcontrib>Mirza, Muhammad Umar</creatorcontrib><creatorcontrib>Nawaz, Asma</creatorcontrib><creatorcontrib>Riaz, Muhammad Bilal</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Alexandria engineering journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talib, Imran</au><au>Jarad, Fahd</au><au>Mirza, Muhammad Umar</au><au>Nawaz, Asma</au><au>Riaz, Muhammad Bilal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalized operational matrix of mixed partial derivative terms with applications to multi-order fractional partial differential equations</atitle><jtitle>Alexandria engineering journal</jtitle><date>2022-01</date><risdate>2022</risdate><volume>61</volume><issue>1</issue><spage>135</spage><epage>145</epage><pages>135-145</pages><issn>1110-0168</issn><abstract>In this paper, a computational approach based on the operational matrices in conjunction with orthogonal shifted Legendre polynomials (OSLPs) is designed to solve numerically the multi-order partial differential equations of fractional order consisting of mixed partial derivative terms. Our computational approach has ability to reduce the fractional problems into a system of Sylvester types matrix equations which can be solved by using MATLAB builtin function lyap(.). The solution is approximated as a basis vectors of OSLPs. The efficiency and the numerical stability is examined by taking various test examples.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.aej.2021.04.067</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1110-0168 |
ispartof | Alexandria engineering journal, 2022-01, Vol.61 (1), p.135-145 |
issn | 1110-0168 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ec92a7f1f92c47518ebcadd3eef21eeb |
source | ScienceDirect |
subjects | Caputo derivative Legendre polynomials Mixed partial derivative terms Multi-term and Multi-order Fractional partial differential equations Operational matrices |
title | A generalized operational matrix of mixed partial derivative terms with applications to multi-order fractional partial differential equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalized%20operational%20matrix%20of%20mixed%20partial%20derivative%20terms%20with%20applications%20to%20multi-order%20fractional%20partial%20differential%20equations&rft.jtitle=Alexandria%20engineering%20journal&rft.au=Talib,%20Imran&rft.date=2022-01&rft.volume=61&rft.issue=1&rft.spage=135&rft.epage=145&rft.pages=135-145&rft.issn=1110-0168&rft_id=info:doi/10.1016/j.aej.2021.04.067&rft_dat=%3Celsevier_doaj_%3ES1110016821003094%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-749e449021a021a23c4f6f0d9fd5a5ca9b5d205e157cf39f6a9db6509f84a8d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |