Loading…

Evaluating State Space Discovery by Persistent Cohomology in the Spatial Representation System

Persistent cohomology is a powerful technique for discovering topological structure in data. Strategies for its use in neuroscience are still undergoing development. We comprehensively and rigorously assess its performance in simulated neural recordings of the brain's spatial representation sys...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in computational neuroscience 2021-04, Vol.15, p.616748-616748
Main Authors: Kang, Louis, Xu, Boyan, Morozov, Dmitriy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c520t-f0770fa75024e6e3085c73f9dfe54b4dff4b8f98504c99d14f0716aac16398fd3
cites cdi_FETCH-LOGICAL-c520t-f0770fa75024e6e3085c73f9dfe54b4dff4b8f98504c99d14f0716aac16398fd3
container_end_page 616748
container_issue
container_start_page 616748
container_title Frontiers in computational neuroscience
container_volume 15
creator Kang, Louis
Xu, Boyan
Morozov, Dmitriy
description Persistent cohomology is a powerful technique for discovering topological structure in data. Strategies for its use in neuroscience are still undergoing development. We comprehensively and rigorously assess its performance in simulated neural recordings of the brain's spatial representation system. Grid, head direction, and conjunctive cell populations each span low-dimensional topological structures embedded in high-dimensional neural activity space. We evaluate the ability for persistent cohomology to discover these structures for different dataset dimensions, variations in spatial tuning, and forms of noise. We quantify its ability to decode simulated animal trajectories contained within these topological structures. We also identify regimes under which mixtures of populations form product topologies that can be detected. Our results reveal how dataset parameters affect the success of topological discovery and suggest principles for applying persistent cohomology, as well as persistent homology, to experimental neural recordings.
doi_str_mv 10.3389/fncom.2021.616748
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ec9a068ec96e431f8f2f8c2091a12c74</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ec9a068ec96e431f8f2f8c2091a12c74</doaj_id><sourcerecordid>2518735062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-f0770fa75024e6e3085c73f9dfe54b4dff4b8f98504c99d14f0716aac16398fd3</originalsourceid><addsrcrecordid>eNpdkstuEzEUhkcIRC_wAGzQCDbdJPg2vmyQUChQqRKIwBbL8RwnjmbGqe2JNG-Pk5SqZXV8-f7fPpeqeoPRnFKpPrjBhn5OEMFzjrlg8ll1jjknswZL-fzR-qy6SGmLECe8QS-rs4NaUNWcV3-u96YbTfbDul5mk6Fe7oyF-rNPNuwhTvVqqn9ATD5lGHK9CJvQhy6sp9oPdd4c-exNV_-EXYRUmLINQ72ciqB_Vb1wpkvw-j5eVr-_XP9afJvdfv96s_h0O7MNQXnmkBDIGdEgwoADRbKxgjrVOmjYirXOsZV0SjaIWaVazIoAc2Ms5lRJ19LL6ubk2waz1bvoexMnHYzXx4MQ19rE7G0HGqwyiMsSODCKnXTESUuQwgYTK1jx-njy2o2rHlpbUoqme2L69GbwG70Oey0RR4yJYvDuZBBS9jpZn8FubBgGsFljIZiSqkBX96_EcDdCyrovJYeuMwOEMWlS-iZoU1pW0Pf_odswxqHUs1ComHEmeKHwibIxpBTBPfwYI31ouD6Oiz6Miz6NS9G8fZzqg-LffNC_Bg29NQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509896476</pqid></control><display><type>article</type><title>Evaluating State Space Discovery by Persistent Cohomology in the Spatial Representation System</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><creator>Kang, Louis ; Xu, Boyan ; Morozov, Dmitriy</creator><creatorcontrib>Kang, Louis ; Xu, Boyan ; Morozov, Dmitriy</creatorcontrib><description>Persistent cohomology is a powerful technique for discovering topological structure in data. Strategies for its use in neuroscience are still undergoing development. We comprehensively and rigorously assess its performance in simulated neural recordings of the brain's spatial representation system. Grid, head direction, and conjunctive cell populations each span low-dimensional topological structures embedded in high-dimensional neural activity space. We evaluate the ability for persistent cohomology to discover these structures for different dataset dimensions, variations in spatial tuning, and forms of noise. We quantify its ability to decode simulated animal trajectories contained within these topological structures. We also identify regimes under which mixtures of populations form product topologies that can be detected. Our results reveal how dataset parameters affect the success of topological discovery and suggest principles for applying persistent cohomology, as well as persistent homology, to experimental neural recordings.</description><identifier>ISSN: 1662-5188</identifier><identifier>EISSN: 1662-5188</identifier><identifier>DOI: 10.3389/fncom.2021.616748</identifier><identifier>PMID: 33897395</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Data analysis ; Datasets ; dimensionality reduction ; grid cells ; Homology ; Nervous system ; neural decoding ; neural manifold ; Neurons ; Neuroscience ; Simulation ; spatial representation ; Time series ; topological data analysis</subject><ispartof>Frontiers in computational neuroscience, 2021-04, Vol.15, p.616748-616748</ispartof><rights>Copyright © 2021 Kang, Xu and Morozov.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2021 Kang, Xu and Morozov. 2021 Kang, Xu and Morozov</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-f0770fa75024e6e3085c73f9dfe54b4dff4b8f98504c99d14f0716aac16398fd3</citedby><cites>FETCH-LOGICAL-c520t-f0770fa75024e6e3085c73f9dfe54b4dff4b8f98504c99d14f0716aac16398fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2509896476/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2509896476?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33897395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1774989$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Louis</creatorcontrib><creatorcontrib>Xu, Boyan</creatorcontrib><creatorcontrib>Morozov, Dmitriy</creatorcontrib><title>Evaluating State Space Discovery by Persistent Cohomology in the Spatial Representation System</title><title>Frontiers in computational neuroscience</title><addtitle>Front Comput Neurosci</addtitle><description>Persistent cohomology is a powerful technique for discovering topological structure in data. Strategies for its use in neuroscience are still undergoing development. We comprehensively and rigorously assess its performance in simulated neural recordings of the brain's spatial representation system. Grid, head direction, and conjunctive cell populations each span low-dimensional topological structures embedded in high-dimensional neural activity space. We evaluate the ability for persistent cohomology to discover these structures for different dataset dimensions, variations in spatial tuning, and forms of noise. We quantify its ability to decode simulated animal trajectories contained within these topological structures. We also identify regimes under which mixtures of populations form product topologies that can be detected. Our results reveal how dataset parameters affect the success of topological discovery and suggest principles for applying persistent cohomology, as well as persistent homology, to experimental neural recordings.</description><subject>Data analysis</subject><subject>Datasets</subject><subject>dimensionality reduction</subject><subject>grid cells</subject><subject>Homology</subject><subject>Nervous system</subject><subject>neural decoding</subject><subject>neural manifold</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Simulation</subject><subject>spatial representation</subject><subject>Time series</subject><subject>topological data analysis</subject><issn>1662-5188</issn><issn>1662-5188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkstuEzEUhkcIRC_wAGzQCDbdJPg2vmyQUChQqRKIwBbL8RwnjmbGqe2JNG-Pk5SqZXV8-f7fPpeqeoPRnFKpPrjBhn5OEMFzjrlg8ll1jjknswZL-fzR-qy6SGmLECe8QS-rs4NaUNWcV3-u96YbTfbDul5mk6Fe7oyF-rNPNuwhTvVqqn9ATD5lGHK9CJvQhy6sp9oPdd4c-exNV_-EXYRUmLINQ72ciqB_Vb1wpkvw-j5eVr-_XP9afJvdfv96s_h0O7MNQXnmkBDIGdEgwoADRbKxgjrVOmjYirXOsZV0SjaIWaVazIoAc2Ms5lRJ19LL6ubk2waz1bvoexMnHYzXx4MQ19rE7G0HGqwyiMsSODCKnXTESUuQwgYTK1jx-njy2o2rHlpbUoqme2L69GbwG70Oey0RR4yJYvDuZBBS9jpZn8FubBgGsFljIZiSqkBX96_EcDdCyrovJYeuMwOEMWlS-iZoU1pW0Pf_odswxqHUs1ComHEmeKHwibIxpBTBPfwYI31ouD6Oiz6Miz6NS9G8fZzqg-LffNC_Bg29NQ</recordid><startdate>20210408</startdate><enddate>20210408</enddate><creator>Kang, Louis</creator><creator>Xu, Boyan</creator><creator>Morozov, Dmitriy</creator><general>Frontiers Research Foundation</general><general>Frontiers Media SA</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210408</creationdate><title>Evaluating State Space Discovery by Persistent Cohomology in the Spatial Representation System</title><author>Kang, Louis ; Xu, Boyan ; Morozov, Dmitriy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-f0770fa75024e6e3085c73f9dfe54b4dff4b8f98504c99d14f0716aac16398fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data analysis</topic><topic>Datasets</topic><topic>dimensionality reduction</topic><topic>grid cells</topic><topic>Homology</topic><topic>Nervous system</topic><topic>neural decoding</topic><topic>neural manifold</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Simulation</topic><topic>spatial representation</topic><topic>Time series</topic><topic>topological data analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Louis</creatorcontrib><creatorcontrib>Xu, Boyan</creatorcontrib><creatorcontrib>Morozov, Dmitriy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in computational neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Louis</au><au>Xu, Boyan</au><au>Morozov, Dmitriy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating State Space Discovery by Persistent Cohomology in the Spatial Representation System</atitle><jtitle>Frontiers in computational neuroscience</jtitle><addtitle>Front Comput Neurosci</addtitle><date>2021-04-08</date><risdate>2021</risdate><volume>15</volume><spage>616748</spage><epage>616748</epage><pages>616748-616748</pages><issn>1662-5188</issn><eissn>1662-5188</eissn><abstract>Persistent cohomology is a powerful technique for discovering topological structure in data. Strategies for its use in neuroscience are still undergoing development. We comprehensively and rigorously assess its performance in simulated neural recordings of the brain's spatial representation system. Grid, head direction, and conjunctive cell populations each span low-dimensional topological structures embedded in high-dimensional neural activity space. We evaluate the ability for persistent cohomology to discover these structures for different dataset dimensions, variations in spatial tuning, and forms of noise. We quantify its ability to decode simulated animal trajectories contained within these topological structures. We also identify regimes under which mixtures of populations form product topologies that can be detected. Our results reveal how dataset parameters affect the success of topological discovery and suggest principles for applying persistent cohomology, as well as persistent homology, to experimental neural recordings.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>33897395</pmid><doi>10.3389/fncom.2021.616748</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-5188
ispartof Frontiers in computational neuroscience, 2021-04, Vol.15, p.616748-616748
issn 1662-5188
1662-5188
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ec9a068ec96e431f8f2f8c2091a12c74
source NCBI_PubMed Central(免费); Publicly Available Content Database
subjects Data analysis
Datasets
dimensionality reduction
grid cells
Homology
Nervous system
neural decoding
neural manifold
Neurons
Neuroscience
Simulation
spatial representation
Time series
topological data analysis
title Evaluating State Space Discovery by Persistent Cohomology in the Spatial Representation System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20State%20Space%20Discovery%20by%20Persistent%20Cohomology%20in%20the%20Spatial%20Representation%20System&rft.jtitle=Frontiers%20in%20computational%20neuroscience&rft.au=Kang,%20Louis&rft.date=2021-04-08&rft.volume=15&rft.spage=616748&rft.epage=616748&rft.pages=616748-616748&rft.issn=1662-5188&rft.eissn=1662-5188&rft_id=info:doi/10.3389/fncom.2021.616748&rft_dat=%3Cproquest_doaj_%3E2518735062%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-f0770fa75024e6e3085c73f9dfe54b4dff4b8f98504c99d14f0716aac16398fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2509896476&rft_id=info:pmid/33897395&rfr_iscdi=true