Loading…
Evaluating State Space Discovery by Persistent Cohomology in the Spatial Representation System
Persistent cohomology is a powerful technique for discovering topological structure in data. Strategies for its use in neuroscience are still undergoing development. We comprehensively and rigorously assess its performance in simulated neural recordings of the brain's spatial representation sys...
Saved in:
Published in: | Frontiers in computational neuroscience 2021-04, Vol.15, p.616748-616748 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c520t-f0770fa75024e6e3085c73f9dfe54b4dff4b8f98504c99d14f0716aac16398fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c520t-f0770fa75024e6e3085c73f9dfe54b4dff4b8f98504c99d14f0716aac16398fd3 |
container_end_page | 616748 |
container_issue | |
container_start_page | 616748 |
container_title | Frontiers in computational neuroscience |
container_volume | 15 |
creator | Kang, Louis Xu, Boyan Morozov, Dmitriy |
description | Persistent cohomology is a powerful technique for discovering topological structure in data. Strategies for its use in neuroscience are still undergoing development. We comprehensively and rigorously assess its performance in simulated neural recordings of the brain's spatial representation system. Grid, head direction, and conjunctive cell populations each span low-dimensional topological structures embedded in high-dimensional neural activity space. We evaluate the ability for persistent cohomology to discover these structures for different dataset dimensions, variations in spatial tuning, and forms of noise. We quantify its ability to decode simulated animal trajectories contained within these topological structures. We also identify regimes under which mixtures of populations form product topologies that can be detected. Our results reveal how dataset parameters affect the success of topological discovery and suggest principles for applying persistent cohomology, as well as persistent homology, to experimental neural recordings. |
doi_str_mv | 10.3389/fncom.2021.616748 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ec9a068ec96e431f8f2f8c2091a12c74</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ec9a068ec96e431f8f2f8c2091a12c74</doaj_id><sourcerecordid>2518735062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-f0770fa75024e6e3085c73f9dfe54b4dff4b8f98504c99d14f0716aac16398fd3</originalsourceid><addsrcrecordid>eNpdkstuEzEUhkcIRC_wAGzQCDbdJPg2vmyQUChQqRKIwBbL8RwnjmbGqe2JNG-Pk5SqZXV8-f7fPpeqeoPRnFKpPrjBhn5OEMFzjrlg8ll1jjknswZL-fzR-qy6SGmLECe8QS-rs4NaUNWcV3-u96YbTfbDul5mk6Fe7oyF-rNPNuwhTvVqqn9ATD5lGHK9CJvQhy6sp9oPdd4c-exNV_-EXYRUmLINQ72ciqB_Vb1wpkvw-j5eVr-_XP9afJvdfv96s_h0O7MNQXnmkBDIGdEgwoADRbKxgjrVOmjYirXOsZV0SjaIWaVazIoAc2Ms5lRJ19LL6ubk2waz1bvoexMnHYzXx4MQ19rE7G0HGqwyiMsSODCKnXTESUuQwgYTK1jx-njy2o2rHlpbUoqme2L69GbwG70Oey0RR4yJYvDuZBBS9jpZn8FubBgGsFljIZiSqkBX96_EcDdCyrovJYeuMwOEMWlS-iZoU1pW0Pf_odswxqHUs1ComHEmeKHwibIxpBTBPfwYI31ouD6Oiz6Miz6NS9G8fZzqg-LffNC_Bg29NQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509896476</pqid></control><display><type>article</type><title>Evaluating State Space Discovery by Persistent Cohomology in the Spatial Representation System</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><creator>Kang, Louis ; Xu, Boyan ; Morozov, Dmitriy</creator><creatorcontrib>Kang, Louis ; Xu, Boyan ; Morozov, Dmitriy</creatorcontrib><description>Persistent cohomology is a powerful technique for discovering topological structure in data. Strategies for its use in neuroscience are still undergoing development. We comprehensively and rigorously assess its performance in simulated neural recordings of the brain's spatial representation system. Grid, head direction, and conjunctive cell populations each span low-dimensional topological structures embedded in high-dimensional neural activity space. We evaluate the ability for persistent cohomology to discover these structures for different dataset dimensions, variations in spatial tuning, and forms of noise. We quantify its ability to decode simulated animal trajectories contained within these topological structures. We also identify regimes under which mixtures of populations form product topologies that can be detected. Our results reveal how dataset parameters affect the success of topological discovery and suggest principles for applying persistent cohomology, as well as persistent homology, to experimental neural recordings.</description><identifier>ISSN: 1662-5188</identifier><identifier>EISSN: 1662-5188</identifier><identifier>DOI: 10.3389/fncom.2021.616748</identifier><identifier>PMID: 33897395</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Data analysis ; Datasets ; dimensionality reduction ; grid cells ; Homology ; Nervous system ; neural decoding ; neural manifold ; Neurons ; Neuroscience ; Simulation ; spatial representation ; Time series ; topological data analysis</subject><ispartof>Frontiers in computational neuroscience, 2021-04, Vol.15, p.616748-616748</ispartof><rights>Copyright © 2021 Kang, Xu and Morozov.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2021 Kang, Xu and Morozov. 2021 Kang, Xu and Morozov</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-f0770fa75024e6e3085c73f9dfe54b4dff4b8f98504c99d14f0716aac16398fd3</citedby><cites>FETCH-LOGICAL-c520t-f0770fa75024e6e3085c73f9dfe54b4dff4b8f98504c99d14f0716aac16398fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2509896476/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2509896476?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33897395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1774989$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Louis</creatorcontrib><creatorcontrib>Xu, Boyan</creatorcontrib><creatorcontrib>Morozov, Dmitriy</creatorcontrib><title>Evaluating State Space Discovery by Persistent Cohomology in the Spatial Representation System</title><title>Frontiers in computational neuroscience</title><addtitle>Front Comput Neurosci</addtitle><description>Persistent cohomology is a powerful technique for discovering topological structure in data. Strategies for its use in neuroscience are still undergoing development. We comprehensively and rigorously assess its performance in simulated neural recordings of the brain's spatial representation system. Grid, head direction, and conjunctive cell populations each span low-dimensional topological structures embedded in high-dimensional neural activity space. We evaluate the ability for persistent cohomology to discover these structures for different dataset dimensions, variations in spatial tuning, and forms of noise. We quantify its ability to decode simulated animal trajectories contained within these topological structures. We also identify regimes under which mixtures of populations form product topologies that can be detected. Our results reveal how dataset parameters affect the success of topological discovery and suggest principles for applying persistent cohomology, as well as persistent homology, to experimental neural recordings.</description><subject>Data analysis</subject><subject>Datasets</subject><subject>dimensionality reduction</subject><subject>grid cells</subject><subject>Homology</subject><subject>Nervous system</subject><subject>neural decoding</subject><subject>neural manifold</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Simulation</subject><subject>spatial representation</subject><subject>Time series</subject><subject>topological data analysis</subject><issn>1662-5188</issn><issn>1662-5188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkstuEzEUhkcIRC_wAGzQCDbdJPg2vmyQUChQqRKIwBbL8RwnjmbGqe2JNG-Pk5SqZXV8-f7fPpeqeoPRnFKpPrjBhn5OEMFzjrlg8ll1jjknswZL-fzR-qy6SGmLECe8QS-rs4NaUNWcV3-u96YbTfbDul5mk6Fe7oyF-rNPNuwhTvVqqn9ATD5lGHK9CJvQhy6sp9oPdd4c-exNV_-EXYRUmLINQ72ciqB_Vb1wpkvw-j5eVr-_XP9afJvdfv96s_h0O7MNQXnmkBDIGdEgwoADRbKxgjrVOmjYirXOsZV0SjaIWaVazIoAc2Ms5lRJ19LL6ubk2waz1bvoexMnHYzXx4MQ19rE7G0HGqwyiMsSODCKnXTESUuQwgYTK1jx-njy2o2rHlpbUoqme2L69GbwG70Oey0RR4yJYvDuZBBS9jpZn8FubBgGsFljIZiSqkBX96_EcDdCyrovJYeuMwOEMWlS-iZoU1pW0Pf_odswxqHUs1ComHEmeKHwibIxpBTBPfwYI31ouD6Oiz6Miz6NS9G8fZzqg-LffNC_Bg29NQ</recordid><startdate>20210408</startdate><enddate>20210408</enddate><creator>Kang, Louis</creator><creator>Xu, Boyan</creator><creator>Morozov, Dmitriy</creator><general>Frontiers Research Foundation</general><general>Frontiers Media SA</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210408</creationdate><title>Evaluating State Space Discovery by Persistent Cohomology in the Spatial Representation System</title><author>Kang, Louis ; Xu, Boyan ; Morozov, Dmitriy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-f0770fa75024e6e3085c73f9dfe54b4dff4b8f98504c99d14f0716aac16398fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data analysis</topic><topic>Datasets</topic><topic>dimensionality reduction</topic><topic>grid cells</topic><topic>Homology</topic><topic>Nervous system</topic><topic>neural decoding</topic><topic>neural manifold</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Simulation</topic><topic>spatial representation</topic><topic>Time series</topic><topic>topological data analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Louis</creatorcontrib><creatorcontrib>Xu, Boyan</creatorcontrib><creatorcontrib>Morozov, Dmitriy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in computational neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Louis</au><au>Xu, Boyan</au><au>Morozov, Dmitriy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating State Space Discovery by Persistent Cohomology in the Spatial Representation System</atitle><jtitle>Frontiers in computational neuroscience</jtitle><addtitle>Front Comput Neurosci</addtitle><date>2021-04-08</date><risdate>2021</risdate><volume>15</volume><spage>616748</spage><epage>616748</epage><pages>616748-616748</pages><issn>1662-5188</issn><eissn>1662-5188</eissn><abstract>Persistent cohomology is a powerful technique for discovering topological structure in data. Strategies for its use in neuroscience are still undergoing development. We comprehensively and rigorously assess its performance in simulated neural recordings of the brain's spatial representation system. Grid, head direction, and conjunctive cell populations each span low-dimensional topological structures embedded in high-dimensional neural activity space. We evaluate the ability for persistent cohomology to discover these structures for different dataset dimensions, variations in spatial tuning, and forms of noise. We quantify its ability to decode simulated animal trajectories contained within these topological structures. We also identify regimes under which mixtures of populations form product topologies that can be detected. Our results reveal how dataset parameters affect the success of topological discovery and suggest principles for applying persistent cohomology, as well as persistent homology, to experimental neural recordings.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>33897395</pmid><doi>10.3389/fncom.2021.616748</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-5188 |
ispartof | Frontiers in computational neuroscience, 2021-04, Vol.15, p.616748-616748 |
issn | 1662-5188 1662-5188 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ec9a068ec96e431f8f2f8c2091a12c74 |
source | NCBI_PubMed Central(免费); Publicly Available Content Database |
subjects | Data analysis Datasets dimensionality reduction grid cells Homology Nervous system neural decoding neural manifold Neurons Neuroscience Simulation spatial representation Time series topological data analysis |
title | Evaluating State Space Discovery by Persistent Cohomology in the Spatial Representation System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20State%20Space%20Discovery%20by%20Persistent%20Cohomology%20in%20the%20Spatial%20Representation%20System&rft.jtitle=Frontiers%20in%20computational%20neuroscience&rft.au=Kang,%20Louis&rft.date=2021-04-08&rft.volume=15&rft.spage=616748&rft.epage=616748&rft.pages=616748-616748&rft.issn=1662-5188&rft.eissn=1662-5188&rft_id=info:doi/10.3389/fncom.2021.616748&rft_dat=%3Cproquest_doaj_%3E2518735062%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-f0770fa75024e6e3085c73f9dfe54b4dff4b8f98504c99d14f0716aac16398fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2509896476&rft_id=info:pmid/33897395&rfr_iscdi=true |