Loading…
Parameter Sensitivity and Inversion Analysis for a Concrete Face Rockfill Dam Based on CS-BPNN
The deformation behavior of rockfill is significant to the normal operation of concrete face rockfill dam. Considering both the nonlinear mechanical behavior and long-term rheological deformation, the E-ν model and modified Burgers model are coupled to describe the deformation behavior of the rockfi...
Saved in:
Published in: | Advances in civil engineering 2019, Vol.2019 (2019), p.1-17 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c502t-b6ef5526b739e68b7a46c4feacd5869bbb800b936132e94e8006dd7f657dcf6b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c502t-b6ef5526b739e68b7a46c4feacd5869bbb800b936132e94e8006dd7f657dcf6b3 |
container_end_page | 17 |
container_issue | 2019 |
container_start_page | 1 |
container_title | Advances in civil engineering |
container_volume | 2019 |
creator | Qin, Xiangnan Shao, Chenfei Gu, Chongshi Chen, Yue |
description | The deformation behavior of rockfill is significant to the normal operation of concrete face rockfill dam. Considering both the nonlinear mechanical behavior and long-term rheological deformation, the E-ν model and modified Burgers model are coupled to describe the deformation behavior of the rockfill materials. The coupled E-ν and Burgers model contains numerous parameters with complex relationship, and an efficient and accurate inversion analysis is in demand. The sensitivity of the parameters in the coupled E-ν and modified Burgers is analyzed using the modified Morris method initially. Then, a new approach of parameter back analysis is proposed by combining back-propagation neutral network (BPNN) and Cuckoo Search (CS) algorithm. The numerical example shows that parameters K, Rf, and φ0 as well as G are more sensitive to the deformation of the rockfill body. The inversion analysis for these four parameters and η2, E2, and A as well as B in modified Burgers model is performed by the CS-BPNN algorithm. The numerical results demonstrate that the parameters obtained with the proposed method are reasonable and its feasibility is validated. |
doi_str_mv | 10.1155/2019/9742961 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ecab9717ab9143548a408e87a1f4d213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ecab9717ab9143548a408e87a1f4d213</doaj_id><sourcerecordid>2312469021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-b6ef5526b739e68b7a46c4feacd5869bbb800b936132e94e8006dd7f657dcf6b3</originalsourceid><addsrcrecordid>eNqFkU1PFTEUhhsjieTKzrVp4lJH2k6nH0u4it6EIBHZ0px2TrU4dwrtgLn_3sEhuGRzvvKc9yTnJeQNZx8577pDwbg9tFoKq_gLss-V0Y1hVr58qo16RQ5qTZ5JqYURgu-Tq3MosMUJC73AsaYp3adpR2Hs6Wa8x1JTHunRCMOupkpjLhToOo-hzCv0BALS7zn8jmkY6CfY0mOo2NN5ZX3RHJ-fnb0mexGGigePeUUuTz7_WH9tTr992ayPTpvQMTE1XmHsOqG8bi0q4zVIFWRECH1nlPXeG8a8bRVvBVqJc6f6XkfV6T5E5dsV2Sy6fYZrd1PSFsrOZUju3yCXnw7KlMKADgN4q7meI5dtJw1IZtBo4FH2grez1rtF66bk2zusk7vOd2V-QXWi5UIqy2ZsRT4sVCi51oLx6Spn7sEQ92CIezRkxt8v-K809vAnPUe_XWicGYzwn-Zcd4q1fwF6fpJd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312469021</pqid></control><display><type>article</type><title>Parameter Sensitivity and Inversion Analysis for a Concrete Face Rockfill Dam Based on CS-BPNN</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>ProQuest Publicly Available Content database</source><creator>Qin, Xiangnan ; Shao, Chenfei ; Gu, Chongshi ; Chen, Yue</creator><contributor>Baraldi, Daniele ; Daniele Baraldi</contributor><creatorcontrib>Qin, Xiangnan ; Shao, Chenfei ; Gu, Chongshi ; Chen, Yue ; Baraldi, Daniele ; Daniele Baraldi</creatorcontrib><description>The deformation behavior of rockfill is significant to the normal operation of concrete face rockfill dam. Considering both the nonlinear mechanical behavior and long-term rheological deformation, the E-ν model and modified Burgers model are coupled to describe the deformation behavior of the rockfill materials. The coupled E-ν and Burgers model contains numerous parameters with complex relationship, and an efficient and accurate inversion analysis is in demand. The sensitivity of the parameters in the coupled E-ν and modified Burgers is analyzed using the modified Morris method initially. Then, a new approach of parameter back analysis is proposed by combining back-propagation neutral network (BPNN) and Cuckoo Search (CS) algorithm. The numerical example shows that parameters K, Rf, and φ0 as well as G are more sensitive to the deformation of the rockfill body. The inversion analysis for these four parameters and η2, E2, and A as well as B in modified Burgers model is performed by the CS-BPNN algorithm. The numerical results demonstrate that the parameters obtained with the proposed method are reasonable and its feasibility is validated.</description><identifier>ISSN: 1687-8086</identifier><identifier>EISSN: 1687-8094</identifier><identifier>DOI: 10.1155/2019/9742961</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Artificial neural networks ; Civil engineering ; Concrete ; Concrete dams ; Deformation ; Demand analysis ; Engineering ; Genetic algorithms ; Mathematical models ; Mathematical problems ; Mechanical properties ; Neural networks ; Parameter modification ; Parameter sensitivity ; Rheological properties ; Rheology ; Rockfill dams ; Search algorithms ; Sensitivity analysis</subject><ispartof>Advances in civil engineering, 2019, Vol.2019 (2019), p.1-17</ispartof><rights>Copyright © 2019 Yue Chen et al.</rights><rights>Copyright © 2019 Yue Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-b6ef5526b739e68b7a46c4feacd5869bbb800b936132e94e8006dd7f657dcf6b3</citedby><cites>FETCH-LOGICAL-c502t-b6ef5526b739e68b7a46c4feacd5869bbb800b936132e94e8006dd7f657dcf6b3</cites><orcidid>0000-0003-2790-4459 ; 0000-0002-0782-7196 ; 0000-0002-2533-6307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2312469021/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2312469021?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Baraldi, Daniele</contributor><contributor>Daniele Baraldi</contributor><creatorcontrib>Qin, Xiangnan</creatorcontrib><creatorcontrib>Shao, Chenfei</creatorcontrib><creatorcontrib>Gu, Chongshi</creatorcontrib><creatorcontrib>Chen, Yue</creatorcontrib><title>Parameter Sensitivity and Inversion Analysis for a Concrete Face Rockfill Dam Based on CS-BPNN</title><title>Advances in civil engineering</title><description>The deformation behavior of rockfill is significant to the normal operation of concrete face rockfill dam. Considering both the nonlinear mechanical behavior and long-term rheological deformation, the E-ν model and modified Burgers model are coupled to describe the deformation behavior of the rockfill materials. The coupled E-ν and Burgers model contains numerous parameters with complex relationship, and an efficient and accurate inversion analysis is in demand. The sensitivity of the parameters in the coupled E-ν and modified Burgers is analyzed using the modified Morris method initially. Then, a new approach of parameter back analysis is proposed by combining back-propagation neutral network (BPNN) and Cuckoo Search (CS) algorithm. The numerical example shows that parameters K, Rf, and φ0 as well as G are more sensitive to the deformation of the rockfill body. The inversion analysis for these four parameters and η2, E2, and A as well as B in modified Burgers model is performed by the CS-BPNN algorithm. The numerical results demonstrate that the parameters obtained with the proposed method are reasonable and its feasibility is validated.</description><subject>Artificial neural networks</subject><subject>Civil engineering</subject><subject>Concrete</subject><subject>Concrete dams</subject><subject>Deformation</subject><subject>Demand analysis</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Mechanical properties</subject><subject>Neural networks</subject><subject>Parameter modification</subject><subject>Parameter sensitivity</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Rockfill dams</subject><subject>Search algorithms</subject><subject>Sensitivity analysis</subject><issn>1687-8086</issn><issn>1687-8094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1PFTEUhhsjieTKzrVp4lJH2k6nH0u4it6EIBHZ0px2TrU4dwrtgLn_3sEhuGRzvvKc9yTnJeQNZx8577pDwbg9tFoKq_gLss-V0Y1hVr58qo16RQ5qTZ5JqYURgu-Tq3MosMUJC73AsaYp3adpR2Hs6Wa8x1JTHunRCMOupkpjLhToOo-hzCv0BALS7zn8jmkY6CfY0mOo2NN5ZX3RHJ-fnb0mexGGigePeUUuTz7_WH9tTr992ayPTpvQMTE1XmHsOqG8bi0q4zVIFWRECH1nlPXeG8a8bRVvBVqJc6f6XkfV6T5E5dsV2Sy6fYZrd1PSFsrOZUju3yCXnw7KlMKADgN4q7meI5dtJw1IZtBo4FH2grez1rtF66bk2zusk7vOd2V-QXWi5UIqy2ZsRT4sVCi51oLx6Spn7sEQ92CIezRkxt8v-K809vAnPUe_XWicGYzwn-Zcd4q1fwF6fpJd</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Qin, Xiangnan</creator><creator>Shao, Chenfei</creator><creator>Gu, Chongshi</creator><creator>Chen, Yue</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2790-4459</orcidid><orcidid>https://orcid.org/0000-0002-0782-7196</orcidid><orcidid>https://orcid.org/0000-0002-2533-6307</orcidid></search><sort><creationdate>2019</creationdate><title>Parameter Sensitivity and Inversion Analysis for a Concrete Face Rockfill Dam Based on CS-BPNN</title><author>Qin, Xiangnan ; Shao, Chenfei ; Gu, Chongshi ; Chen, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-b6ef5526b739e68b7a46c4feacd5869bbb800b936132e94e8006dd7f657dcf6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Civil engineering</topic><topic>Concrete</topic><topic>Concrete dams</topic><topic>Deformation</topic><topic>Demand analysis</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Mechanical properties</topic><topic>Neural networks</topic><topic>Parameter modification</topic><topic>Parameter sensitivity</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Rockfill dams</topic><topic>Search algorithms</topic><topic>Sensitivity analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Qin, Xiangnan</creatorcontrib><creatorcontrib>Shao, Chenfei</creatorcontrib><creatorcontrib>Gu, Chongshi</creatorcontrib><creatorcontrib>Chen, Yue</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Advances in civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Xiangnan</au><au>Shao, Chenfei</au><au>Gu, Chongshi</au><au>Chen, Yue</au><au>Baraldi, Daniele</au><au>Daniele Baraldi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter Sensitivity and Inversion Analysis for a Concrete Face Rockfill Dam Based on CS-BPNN</atitle><jtitle>Advances in civil engineering</jtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1687-8086</issn><eissn>1687-8094</eissn><abstract>The deformation behavior of rockfill is significant to the normal operation of concrete face rockfill dam. Considering both the nonlinear mechanical behavior and long-term rheological deformation, the E-ν model and modified Burgers model are coupled to describe the deformation behavior of the rockfill materials. The coupled E-ν and Burgers model contains numerous parameters with complex relationship, and an efficient and accurate inversion analysis is in demand. The sensitivity of the parameters in the coupled E-ν and modified Burgers is analyzed using the modified Morris method initially. Then, a new approach of parameter back analysis is proposed by combining back-propagation neutral network (BPNN) and Cuckoo Search (CS) algorithm. The numerical example shows that parameters K, Rf, and φ0 as well as G are more sensitive to the deformation of the rockfill body. The inversion analysis for these four parameters and η2, E2, and A as well as B in modified Burgers model is performed by the CS-BPNN algorithm. The numerical results demonstrate that the parameters obtained with the proposed method are reasonable and its feasibility is validated.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/9742961</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2790-4459</orcidid><orcidid>https://orcid.org/0000-0002-0782-7196</orcidid><orcidid>https://orcid.org/0000-0002-2533-6307</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-8086 |
ispartof | Advances in civil engineering, 2019, Vol.2019 (2019), p.1-17 |
issn | 1687-8086 1687-8094 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ecab9717ab9143548a408e87a1f4d213 |
source | Open Access: Wiley-Blackwell Open Access Journals; ProQuest Publicly Available Content database |
subjects | Artificial neural networks Civil engineering Concrete Concrete dams Deformation Demand analysis Engineering Genetic algorithms Mathematical models Mathematical problems Mechanical properties Neural networks Parameter modification Parameter sensitivity Rheological properties Rheology Rockfill dams Search algorithms Sensitivity analysis |
title | Parameter Sensitivity and Inversion Analysis for a Concrete Face Rockfill Dam Based on CS-BPNN |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20Sensitivity%20and%20Inversion%20Analysis%20for%20a%20Concrete%20Face%20Rockfill%20Dam%20Based%20on%20CS-BPNN&rft.jtitle=Advances%20in%20civil%20engineering&rft.au=Qin,%20Xiangnan&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1687-8086&rft.eissn=1687-8094&rft_id=info:doi/10.1155/2019/9742961&rft_dat=%3Cproquest_doaj_%3E2312469021%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c502t-b6ef5526b739e68b7a46c4feacd5869bbb800b936132e94e8006dd7f657dcf6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2312469021&rft_id=info:pmid/&rfr_iscdi=true |