Loading…

Parameter Sensitivity and Inversion Analysis for a Concrete Face Rockfill Dam Based on CS-BPNN

The deformation behavior of rockfill is significant to the normal operation of concrete face rockfill dam. Considering both the nonlinear mechanical behavior and long-term rheological deformation, the E-ν model and modified Burgers model are coupled to describe the deformation behavior of the rockfi...

Full description

Saved in:
Bibliographic Details
Published in:Advances in civil engineering 2019, Vol.2019 (2019), p.1-17
Main Authors: Qin, Xiangnan, Shao, Chenfei, Gu, Chongshi, Chen, Yue
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c502t-b6ef5526b739e68b7a46c4feacd5869bbb800b936132e94e8006dd7f657dcf6b3
cites cdi_FETCH-LOGICAL-c502t-b6ef5526b739e68b7a46c4feacd5869bbb800b936132e94e8006dd7f657dcf6b3
container_end_page 17
container_issue 2019
container_start_page 1
container_title Advances in civil engineering
container_volume 2019
creator Qin, Xiangnan
Shao, Chenfei
Gu, Chongshi
Chen, Yue
description The deformation behavior of rockfill is significant to the normal operation of concrete face rockfill dam. Considering both the nonlinear mechanical behavior and long-term rheological deformation, the E-ν model and modified Burgers model are coupled to describe the deformation behavior of the rockfill materials. The coupled E-ν and Burgers model contains numerous parameters with complex relationship, and an efficient and accurate inversion analysis is in demand. The sensitivity of the parameters in the coupled E-ν and modified Burgers is analyzed using the modified Morris method initially. Then, a new approach of parameter back analysis is proposed by combining back-propagation neutral network (BPNN) and Cuckoo Search (CS) algorithm. The numerical example shows that parameters K, Rf, and φ0 as well as G are more sensitive to the deformation of the rockfill body. The inversion analysis for these four parameters and η2, E2, and A as well as B in modified Burgers model is performed by the CS-BPNN algorithm. The numerical results demonstrate that the parameters obtained with the proposed method are reasonable and its feasibility is validated.
doi_str_mv 10.1155/2019/9742961
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ecab9717ab9143548a408e87a1f4d213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ecab9717ab9143548a408e87a1f4d213</doaj_id><sourcerecordid>2312469021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-b6ef5526b739e68b7a46c4feacd5869bbb800b936132e94e8006dd7f657dcf6b3</originalsourceid><addsrcrecordid>eNqFkU1PFTEUhhsjieTKzrVp4lJH2k6nH0u4it6EIBHZ0px2TrU4dwrtgLn_3sEhuGRzvvKc9yTnJeQNZx8577pDwbg9tFoKq_gLss-V0Y1hVr58qo16RQ5qTZ5JqYURgu-Tq3MosMUJC73AsaYp3adpR2Hs6Wa8x1JTHunRCMOupkpjLhToOo-hzCv0BALS7zn8jmkY6CfY0mOo2NN5ZX3RHJ-fnb0mexGGigePeUUuTz7_WH9tTr992ayPTpvQMTE1XmHsOqG8bi0q4zVIFWRECH1nlPXeG8a8bRVvBVqJc6f6XkfV6T5E5dsV2Sy6fYZrd1PSFsrOZUju3yCXnw7KlMKADgN4q7meI5dtJw1IZtBo4FH2grez1rtF66bk2zusk7vOd2V-QXWi5UIqy2ZsRT4sVCi51oLx6Spn7sEQ92CIezRkxt8v-K809vAnPUe_XWicGYzwn-Zcd4q1fwF6fpJd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312469021</pqid></control><display><type>article</type><title>Parameter Sensitivity and Inversion Analysis for a Concrete Face Rockfill Dam Based on CS-BPNN</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>ProQuest Publicly Available Content database</source><creator>Qin, Xiangnan ; Shao, Chenfei ; Gu, Chongshi ; Chen, Yue</creator><contributor>Baraldi, Daniele ; Daniele Baraldi</contributor><creatorcontrib>Qin, Xiangnan ; Shao, Chenfei ; Gu, Chongshi ; Chen, Yue ; Baraldi, Daniele ; Daniele Baraldi</creatorcontrib><description>The deformation behavior of rockfill is significant to the normal operation of concrete face rockfill dam. Considering both the nonlinear mechanical behavior and long-term rheological deformation, the E-ν model and modified Burgers model are coupled to describe the deformation behavior of the rockfill materials. The coupled E-ν and Burgers model contains numerous parameters with complex relationship, and an efficient and accurate inversion analysis is in demand. The sensitivity of the parameters in the coupled E-ν and modified Burgers is analyzed using the modified Morris method initially. Then, a new approach of parameter back analysis is proposed by combining back-propagation neutral network (BPNN) and Cuckoo Search (CS) algorithm. The numerical example shows that parameters K, Rf, and φ0 as well as G are more sensitive to the deformation of the rockfill body. The inversion analysis for these four parameters and η2, E2, and A as well as B in modified Burgers model is performed by the CS-BPNN algorithm. The numerical results demonstrate that the parameters obtained with the proposed method are reasonable and its feasibility is validated.</description><identifier>ISSN: 1687-8086</identifier><identifier>EISSN: 1687-8094</identifier><identifier>DOI: 10.1155/2019/9742961</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Artificial neural networks ; Civil engineering ; Concrete ; Concrete dams ; Deformation ; Demand analysis ; Engineering ; Genetic algorithms ; Mathematical models ; Mathematical problems ; Mechanical properties ; Neural networks ; Parameter modification ; Parameter sensitivity ; Rheological properties ; Rheology ; Rockfill dams ; Search algorithms ; Sensitivity analysis</subject><ispartof>Advances in civil engineering, 2019, Vol.2019 (2019), p.1-17</ispartof><rights>Copyright © 2019 Yue Chen et al.</rights><rights>Copyright © 2019 Yue Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-b6ef5526b739e68b7a46c4feacd5869bbb800b936132e94e8006dd7f657dcf6b3</citedby><cites>FETCH-LOGICAL-c502t-b6ef5526b739e68b7a46c4feacd5869bbb800b936132e94e8006dd7f657dcf6b3</cites><orcidid>0000-0003-2790-4459 ; 0000-0002-0782-7196 ; 0000-0002-2533-6307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2312469021/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2312469021?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Baraldi, Daniele</contributor><contributor>Daniele Baraldi</contributor><creatorcontrib>Qin, Xiangnan</creatorcontrib><creatorcontrib>Shao, Chenfei</creatorcontrib><creatorcontrib>Gu, Chongshi</creatorcontrib><creatorcontrib>Chen, Yue</creatorcontrib><title>Parameter Sensitivity and Inversion Analysis for a Concrete Face Rockfill Dam Based on CS-BPNN</title><title>Advances in civil engineering</title><description>The deformation behavior of rockfill is significant to the normal operation of concrete face rockfill dam. Considering both the nonlinear mechanical behavior and long-term rheological deformation, the E-ν model and modified Burgers model are coupled to describe the deformation behavior of the rockfill materials. The coupled E-ν and Burgers model contains numerous parameters with complex relationship, and an efficient and accurate inversion analysis is in demand. The sensitivity of the parameters in the coupled E-ν and modified Burgers is analyzed using the modified Morris method initially. Then, a new approach of parameter back analysis is proposed by combining back-propagation neutral network (BPNN) and Cuckoo Search (CS) algorithm. The numerical example shows that parameters K, Rf, and φ0 as well as G are more sensitive to the deformation of the rockfill body. The inversion analysis for these four parameters and η2, E2, and A as well as B in modified Burgers model is performed by the CS-BPNN algorithm. The numerical results demonstrate that the parameters obtained with the proposed method are reasonable and its feasibility is validated.</description><subject>Artificial neural networks</subject><subject>Civil engineering</subject><subject>Concrete</subject><subject>Concrete dams</subject><subject>Deformation</subject><subject>Demand analysis</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Mechanical properties</subject><subject>Neural networks</subject><subject>Parameter modification</subject><subject>Parameter sensitivity</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Rockfill dams</subject><subject>Search algorithms</subject><subject>Sensitivity analysis</subject><issn>1687-8086</issn><issn>1687-8094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1PFTEUhhsjieTKzrVp4lJH2k6nH0u4it6EIBHZ0px2TrU4dwrtgLn_3sEhuGRzvvKc9yTnJeQNZx8577pDwbg9tFoKq_gLss-V0Y1hVr58qo16RQ5qTZ5JqYURgu-Tq3MosMUJC73AsaYp3adpR2Hs6Wa8x1JTHunRCMOupkpjLhToOo-hzCv0BALS7zn8jmkY6CfY0mOo2NN5ZX3RHJ-fnb0mexGGigePeUUuTz7_WH9tTr992ayPTpvQMTE1XmHsOqG8bi0q4zVIFWRECH1nlPXeG8a8bRVvBVqJc6f6XkfV6T5E5dsV2Sy6fYZrd1PSFsrOZUju3yCXnw7KlMKADgN4q7meI5dtJw1IZtBo4FH2grez1rtF66bk2zusk7vOd2V-QXWi5UIqy2ZsRT4sVCi51oLx6Spn7sEQ92CIezRkxt8v-K809vAnPUe_XWicGYzwn-Zcd4q1fwF6fpJd</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Qin, Xiangnan</creator><creator>Shao, Chenfei</creator><creator>Gu, Chongshi</creator><creator>Chen, Yue</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2790-4459</orcidid><orcidid>https://orcid.org/0000-0002-0782-7196</orcidid><orcidid>https://orcid.org/0000-0002-2533-6307</orcidid></search><sort><creationdate>2019</creationdate><title>Parameter Sensitivity and Inversion Analysis for a Concrete Face Rockfill Dam Based on CS-BPNN</title><author>Qin, Xiangnan ; Shao, Chenfei ; Gu, Chongshi ; Chen, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-b6ef5526b739e68b7a46c4feacd5869bbb800b936132e94e8006dd7f657dcf6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Civil engineering</topic><topic>Concrete</topic><topic>Concrete dams</topic><topic>Deformation</topic><topic>Demand analysis</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Mechanical properties</topic><topic>Neural networks</topic><topic>Parameter modification</topic><topic>Parameter sensitivity</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Rockfill dams</topic><topic>Search algorithms</topic><topic>Sensitivity analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Qin, Xiangnan</creatorcontrib><creatorcontrib>Shao, Chenfei</creatorcontrib><creatorcontrib>Gu, Chongshi</creatorcontrib><creatorcontrib>Chen, Yue</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Advances in civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Xiangnan</au><au>Shao, Chenfei</au><au>Gu, Chongshi</au><au>Chen, Yue</au><au>Baraldi, Daniele</au><au>Daniele Baraldi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter Sensitivity and Inversion Analysis for a Concrete Face Rockfill Dam Based on CS-BPNN</atitle><jtitle>Advances in civil engineering</jtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1687-8086</issn><eissn>1687-8094</eissn><abstract>The deformation behavior of rockfill is significant to the normal operation of concrete face rockfill dam. Considering both the nonlinear mechanical behavior and long-term rheological deformation, the E-ν model and modified Burgers model are coupled to describe the deformation behavior of the rockfill materials. The coupled E-ν and Burgers model contains numerous parameters with complex relationship, and an efficient and accurate inversion analysis is in demand. The sensitivity of the parameters in the coupled E-ν and modified Burgers is analyzed using the modified Morris method initially. Then, a new approach of parameter back analysis is proposed by combining back-propagation neutral network (BPNN) and Cuckoo Search (CS) algorithm. The numerical example shows that parameters K, Rf, and φ0 as well as G are more sensitive to the deformation of the rockfill body. The inversion analysis for these four parameters and η2, E2, and A as well as B in modified Burgers model is performed by the CS-BPNN algorithm. The numerical results demonstrate that the parameters obtained with the proposed method are reasonable and its feasibility is validated.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/9742961</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2790-4459</orcidid><orcidid>https://orcid.org/0000-0002-0782-7196</orcidid><orcidid>https://orcid.org/0000-0002-2533-6307</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-8086
ispartof Advances in civil engineering, 2019, Vol.2019 (2019), p.1-17
issn 1687-8086
1687-8094
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ecab9717ab9143548a408e87a1f4d213
source Open Access: Wiley-Blackwell Open Access Journals; ProQuest Publicly Available Content database
subjects Artificial neural networks
Civil engineering
Concrete
Concrete dams
Deformation
Demand analysis
Engineering
Genetic algorithms
Mathematical models
Mathematical problems
Mechanical properties
Neural networks
Parameter modification
Parameter sensitivity
Rheological properties
Rheology
Rockfill dams
Search algorithms
Sensitivity analysis
title Parameter Sensitivity and Inversion Analysis for a Concrete Face Rockfill Dam Based on CS-BPNN
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20Sensitivity%20and%20Inversion%20Analysis%20for%20a%20Concrete%20Face%20Rockfill%20Dam%20Based%20on%20CS-BPNN&rft.jtitle=Advances%20in%20civil%20engineering&rft.au=Qin,%20Xiangnan&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1687-8086&rft.eissn=1687-8094&rft_id=info:doi/10.1155/2019/9742961&rft_dat=%3Cproquest_doaj_%3E2312469021%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c502t-b6ef5526b739e68b7a46c4feacd5869bbb800b936132e94e8006dd7f657dcf6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2312469021&rft_id=info:pmid/&rfr_iscdi=true