Loading…
High-brightness green InP-based QLEDs enabled by in-situ passivating core surface with zinc myristate
The performance of red InP and blue ZnTeSe-based quantum dots (QDs) and corresponding QD light emitting diodes (QLEDs) has already been improved significantly, whose external quantum efficiencies (EQEs) and luminances have exceeded 20% and 80 000 cd m −2 , respectively. However, the inferior perform...
Saved in:
Published in: | Materials futures 2024-06, Vol.3 (2), p.25201 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The performance of red InP and blue ZnTeSe-based quantum dots (QDs) and corresponding QD light emitting diodes (QLEDs) has already been improved significantly, whose external quantum efficiencies (EQEs) and luminances have exceeded 20% and 80 000 cd m
−2
, respectively. However, the inferior performance of the green InP-based device hinders the commercialization of full-color Cd-free QLED technology. The ease of oxidation of the highly reactive InP cores leads to high non-radiative recombination and poor photoluminescence quantum yield (PL QY) of the InP-based core/shell QDs, limiting the performance of the relevant QLEDs. Here, we proposed a fluoride-free synthesis strategy to
in-situ
passivate the InP cores, in which zinc myristate reacted with phosphine dangling bonds to form Zn–P protective layer and protect InP cores from the water and oxygen in the environment. The resultant InP/ZnSe/ZnS core/shell QDs demonstrated a high PL QY of 91%. The corresponding green-emitting electroluminescence devices exhibited a maximum EQE of 12.74%, along with a luminance of over 175 000 cd m
−2
and a long T
50
@100 cd m
−2
lifetime of over 20 000 h. |
---|---|
ISSN: | 2752-5724 2752-5724 |
DOI: | 10.1088/2752-5724/ad3a83 |